Modules for Microbiology

Mastermodule

mar500 - Physiology and diversity of microorganisms

<table>
<thead>
<tr>
<th>Module label</th>
<th>Physiology and diversity of microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar500</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme Microbiology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

- Module responsibility: Bert Engelen
- Module counseling: Lehrende der Mikrobiologie

Entry requirements

- none

Skills to be acquired in this module

- The students know the cells of pro- und eukaryotes. They understand the basic mechanisms of microbial metabolism. They know the physiological and phylogenetic groups of prokaryotes, eukaryotic microorganisms and viruses. They have an overview over applied aspects of microbiology.

Module contents

- Lecture + Exercises: Physiology and Life modes of Prokaryotes: Cellular and subcellular organization, assimilation and dissimilation, energy metabolism, transport, microbial growth, respiration, chemiosmotic theory, fermentation, anaerobic respiration, lithotrophy, photosynthesis, prokaryotic diversity, systematics and taxonomy, Archaea, Bacteria, Eukarya, pathogenic prokaryotes, evolution, microbiological techniques
- Lecture + Exercises: Microbial Diversity The eukaryotic cell, diversity, systematics and taxonomy of prokaryotes and eukaryotic microorganisms, algae, protozoa, fungi, slime molds, phagocytosis, symbioses, pathogenic eukaryotes, diversity of eukaryotic microbes, components of viruses, virus reproduction, bacteriophages, diversity of viruses, virus diseases

Broadening lectures, one out of the following lectures:

- Biological significance of suspended matter
- Sediment Microbiology

This lecture presents state of the art knowledge about occurrence, life and activities of microorganisms in these environments. Physiological issues are addressed as well as evolutionary and applied aspects. Topics are:

- Formation, diagenesis and special features of sediments
- physico-chemical conditions and geological records
- interpretation of gradients
- microbes and biological processes in sediments
- methods for cultivation of sediment organisms
- molecular methods
- biogeochemical methods
- quantification of prokaryotes and viruses

(Teacher: Engelen; Form of study/semester periods per week: 4 week block, 2 lectures per week, Presence: 16 hours, private study: 74 hours; Credits: 3; 2nd Semester, Learning target/competences: Physico-chemical conditions, microbial processes and methods of studying these processes in sediments)

Broadening Seminar: Scientific writing and presentation

The students know the importance and structure of scientific publications. They have learned to critically read those, and know the requirements of different parts. They are trained to give oral presentations and know how to produce scientific reports and posters. The know how to use the library and how to find relevant literature on the internet, and how to use data banks like Endnote. They have learned how to present themselves for an application.

Seminar Scientific writing and presentation:

- Types and relevance of scientific publications
- Parts of scientific publications step by step:
 - Abstract, Introduction, Results, Discussion
 - University facilities for literature search
 - Oral presentation
 - How to prepare posters
 - Tips for using PowerPoint, Word and Endnote
- Job application

(Courses: Seminar (2 SPPW, 3 CP); Teachers: Engelen; Work load: Presence: 30 hours, private study: 60 hours; Passing criteria: Oral presentation or discussion of parts of scientific papers)

Excursions to companies and scientific institutions
Reader's advisory

Brock. Microbiology

Links

Language of instruction

English

Duration (semesters)

2 Semester

Module frequency

jährlich

Module capacity

unlimited

Modullevel

Modulart

je nach Studiengang Pflicht oder Wahlpflicht

Lern-Lehrform / Type of program

Lecture + Exercises: Physiology and life modes of prokaryotes (2 + 1 semester periods per week [SPPW], 3 CP)
Lecture + Exercises: Microbial Diversity (2 +1 SPPW, 3 CP)
1 broadening lecture or seminar (Biological significance of suspended matter / Sediment microbiology / Broadening Seminar: Scientific writing and presentation) (2 SPPW, 3 CP)
Microbiological + ICBM Colloquium (2 CP)
Excursions (1 CP)

Vorkenntnisse / Previous knowledge

Examination

Time of examination

Type of examination

Final exam of module

At the end of the lecture period.

Two written tests about the contents of the lectures 'Physiology and life modes of prokaryotes' and Microbial Diversity.

At least 50 % of the reachable points in written tests about the two lectures mentioned above.

Course type

Comment

SWS

Frequency

Workload attendance

Lecture

6.00

84 h

Exercises

2.00

28 h

Study trip

1.00

14 h

Total time of attendance for the module

126 h
mar510 - Molecular Mechanisms and Interactions

<table>
<thead>
<tr>
<th>Module label</th>
<th>Molecular Mechanisms and Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar510</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>Ralf Andreas Rabus</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>Lehrende der Mikrobiologie</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>none</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students know the molecular mechanisms of metabolism, genetics and evolution. They know regulatory mechanisms on the molecular level and feedback mechanisms between organisms. They know the basics of microbial ecology and the biogeochemistry of important microbial habitats. They know molecular and chemical-analytical methods of microbiology. The have experience with the field study of microorganisms.</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Molecular Microbiology : Stryer – Biochemistry Voet – Biochemistry Knippers – Molekulare Genetik Snyder – Molecular Genetics of Bacteria Brock - Microbiology</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>12 CP</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lern-Lehrform / Type of program</td>
<td>Lecture + Exercises: Molecular microbiology, (2 +1 SPPW, 3 CP) Lecture + Exercises: Microbial ecology (2 + 1 SPPW, 3 CP) Broadening lecture: Scientific writing and presentation (2 SPPW, 3 CP) Excursion (1 CP) Microbiological + ICBM Colloquium (2 CP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period, the exact date will be announced during the course. Two written tests about the contents of the lectures 'Molecular Microbiology' and 'Microbial Ecology'. At least 50 % of the reachable points in written tests about the two lectures mentioned above. Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Study trip</td>
<td></td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
</tr>
</tbody>
</table>
mar520 - Main Module Proteomics

Module label
Main Module Proteomics

Module code
mar520

Credit points
12.0 KP

Workload
360 h

Used in course of study
- Master's Programme Microbiology (Master) > Mastermodule

Contact person
Module responsibility
- Ralf Andreas Rabus

Module counseling
- Lars Wöhlbrand
- N. N.

Entry requirements
Lecture: Physiology and diversity of prokaryotes
Lecture: Molecular Microbiology

Skills to be acquired in this module
The students are getting directly involved in actual scientific projects in the area of physiological and/or meta-proteomics (under guidance). They
- get acquainted with state-of-the-art proteomic concepts and technologies,
- know how to write concise scientific protocols,
- know how to present/discuss their results in public.

Module contents
Functional proteomics: Daily lectures introduce the students to theory and concepts of modern proteomics: (i) separation of cellular compartments and protein extraction, (ii) gel-based and free protein separation, (iii) gel-staining, protein detection and quantification by image analysis, (iv) integrative mass spectrometry-based protein identification, (v) meta-proteomics, and (vi) focused genomic analysis. Each student will prepare a seminar presentation on selected publications relevant for the actual scientific project. The following sequence of experiments will be conducted: - extraction and quantification of total protein from prepared cell samples (incl. separation of compartments), - protein separation by SDS-PAGE and staining with Coomassie, silver and/or fluorescent dyes, - digital image acquisition and analysis, - manual and/or automated band excision, - protein identification by nanoLC-ESI-MS/MS, - nanoLC-MALDI-coupling and protein identification by MALDI-TOF-MS/MS, - physiological interpretation of predicted protein functions and relevant genomic context.

Reader’s advisory
Lottspeich - Bioanalytik

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
yearly

Module capacity
unlimited

Reference text
12 CP | SE; PR | 2. FS | Rabus

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
Seminar (2 CP), practical course (10 CP)

Vorkenntnisse / Previous knowledge

Examination

Time of examination
Announced at the beginning of the course.

Type of examination
One assessments of examination: Portfolio: Written protocol and contribution to the seminar (seminar presentation) Seminar presentation (25%), written protocol (75 %). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice or the course.

Course type

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Practical</td>
<td>8.00</td>
<td></td>
<td>112 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
140 h
mar530 - Main Module Ecophysiology of anaerobes

Module label: Main Module Ecophysiology of anaerobes
Module code: mar530
Credit points: 12.0 KP
Workload: 360 h
Used in course of study: Master's Programme Microbiology (Master) > Mastermodule

Contact person:
- Module responsibility: Bert Engelen

Entry requirements:
Lecture: Microbial Physiology and Diversity, recommended: Sediment Microbiology

Skills to be acquired in this module:
The students can contribute to current scientific projects (under guidance). They know modern analytical techniques. They know and understand recent scientific literature. They can write scientific reports, present their results and discuss them in the public.

Module contents:
“Ecophysiology of prokaryotes”: Projects derived from current scientific programs are carried out, typically in groups of two students guided by a senior scientist or PhD student. Typical project deal with:
- Anaerobic processes
- Molecular analysis of microbial communities
- Sediment microbiology
- Physiological experiments and activity measurements
- Impact of viruses
- Microscopic analysis of chemotaxis
In the accompanying seminar, recent scientific studies in international journals are presented by the students. The results are summarized and discussed in a protocol fulfilling scientific level requirements.

Reader’s advisory: will be announced

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: 12 CP | SE; PR | 1. FS | Cypionka
Modullevel: ---
Modalart: Wahlpflicht / Elective
Lern-/Lehrform / Type of program: Block course, 4 weeks, seminar and laboratory work

Vorkenntnisse / Previous knowledge:

Examination:
Time of examination: Announced during the course.
Type of examination: One assessments of examination:
- Portfolio: Written protocol and contribution to the seminar (seminar presentation)
- Seminar presentation (no mark), written protocol (100%)
- Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice or the course supervisor.)

Final exam of module: Announced during the course.

Course type: Seminar
Comment: 2.00
SWS: 2.00
Frequency: 28 h
Workload attendance: 28 h

Course type: Practical
Comment: 8.00
SWS: 8.00
Frequency: 112 h
Workload attendance: 112 h

Total time of attendance for the module: 140 h
mar540 - Main Module Ecology of Marine Microbial communities

Module label: Main Module Ecology of Marine Microbial communities
Module code: mar540
Credit points: 12.0 KP
Workload: 360 h
Used in course of study: Master's Programme Microbiology (Master) > Mastermodule

Contact person:
- Module responsibility: Meinhard Simon
- Module counseling: Thorsten Henning Brinkhoff

Entry requirements:
Lecture: Biological significance of suspended matter

Skills to be acquired in this module:
The students learn how to address scientific questions and to carry out experimental and/or field work in scientific projects guided by experienced researchers and PhD students. The projects are designed in the context of ongoing research on the ecology of bacterial communities in the water column, oxic sediments and associated to eukaryotic organisms. The students learn to apply various state of the art methods and approaches in aquatic microbial ecology and how to interpret data and results of the projects. They learn to write protocols in the structure of scientific papers and to present own results and reference studies to an audience.

The students gain competences in how to design experiments and address specific research questions in aquatic microbial ecology and to choose appropriate methods. They obtain practical experience in project-targeted application of state of the art methods. This enables them to obtain a more critical view on the application of these and other methods and on the validity of scientific investigations in aquatic microbial ecology.

Module contents:
"Ecology of marine microbes": The students carry out small projects coming out of ongoing research of PhD Thesis work and other current research of the working group. Typically a group of two or three students is guided by a senior researcher and/or a PhD student. In the accompanying seminar, recent scientific studies published in international journals are presented by the students. The results are written down and discussed in a protocol fulfilling scientific level requirements.

Reader's advisory:
will be announced

Links:
Languages of instruction: English, German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: 12 CP | SE; PR | 2. FS | Simon
Modulelevel: ---
Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program:
Vorkenntnisse / Previous knowledge:
Examination:
Final exam of module: to be announced during the course.

Type of examination:
One assessments of examination: Portfolio: Written protocol and contribution to the seminar (seminar presentation)
Assessments of examination: Portfolio: Written protocol (75 %) and contribution to the seminar (seminar presentation 25%). Active participation in the course. This includes, e.g. specific exercises, writing a lab report and seminar presentation, according to the advice of the supervisors.

Course type: Seminar, Practical
Comment: "Ecology of marine microbes"
SWS: 1.00, 9.00
Frequency: 14 h, 126 h
Workload attendance: 140 h

Total time of attendance for the module:
mar560 - Profile Module Fermentation

Module label: Profile Module Fermentation
Module code: mar560
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Microbiology (Master) > Mastermodule

Contact person:
Module responsibility
- Ralf Andreas Rabus
Module counseling
- Lars Wöhlbrand

Entry requirements:
- Lecture: Physiology and diversity of prokaryotes (successfully completed)
- Lecture: Molecular Microbiology

Skills to be acquired in this module:
The students are getting directly involved in actual scientific projects in the area of general physiology (under guidance). They understand the scientific rational and design of the experiment(s), get acquainted with state-of-the-art concepts and technologies for process-controlled cultivation and growth balancing, know how to write concise scientific protocols, know how to present/discuss their results in public.

Module contents:
"Fermentation": Daily lectures introduce the students to theory and concepts of process-controlled cultivation:
(i) growth physiology and balancing, (ii) design and operating mode of laboratory fermenters, (iii) pH / pO2 electrodes and kLa-determination of O2-supply, (iv) on-line gas analysis (O2, CO2, etc.) by mass spectrometry. Each student will prepare a seminar presentation on selected publications relevant for the actual scientific project.

The following sequence of experiments will be conducted:
- cultivation of bacterial pure cultures in Erlenmeyer flasks as inoculum for actual "fermenter"-cultures
- determination of optical density, the live count and dry weight of cells during cultivation in fermenter
- (dis)assembly and sterilization of fermentation devices
- operate process-controlled fermenters (incl. O2 and pH adjustments and sterile sampling)
- determine O2-consumption and CO2-production rates based on on-line GC-MS measurements
- quantitative determination and calculation growth balances

Reader's advisory:

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: 6 CP | SE; PR | 2. FS | Rabus
Modullevel: ---
Modulart: Wahlpflicht / Elective
Lern-/Lehrform / Type of program: Seminar (1 SPPW); practical course (4 SPPW)

Vorkenntnisse / Previous knowledge:

Examination:
- Time of examination: Announced at the beginning of the course.
- Type of examination:
 - One assessment of examination: Portfolio (seminar presentation, written protocol)
 - Protocol (100 %), seminar presentation (no mark).
 - Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Course type:
- Seminar: 1.00 SWS, 14 h
- Practical: 4.00 SWS, 56 h

Total time of attendance for the module: 70 h
mar570 - Profile Module Introduction to DNA-sequencing and sequence analysis

Module label
Profile Module Introduction to DNA-sequencing and sequence analysis

Module code
mar570

Credit points
6.0 KP

Workload
180 h

Used in course of study
• Master's Programme Microbiology (Master) > Mastermodule

Contact person
Module responsibility
- Thorsten Henning Brinkhoff

Authorized examiners
- Thorsten Henning Brinkhoff
- Liliana Cristina Moraru

Module counseling
- Liliana Cristina Moraru

Entry requirements
Lecture during the course

Skills to be acquired in this module
The students know how to
- sequence DNA by Sanger sequencing
- assemble DNA sequences
- use internet databases for sequence comparison
- use the various facilities of the NCBI database
- analyze bacterial genomes for presence of specific genes
- use ARB, databases and literature data to create phylogenetic trees
- design primers and probes
- present and discuss scientific results
- write a scientific protocol

Module contents
Introduction into DNA-sequencing and sequence analysis: The course starts with a lecture on the first two days. During the following days the participants will give seminar talks about different scientific studies for which DNA sequencing was highly relevant. DNA sequencing will be taught in the lab of the working group. Sequence analysis, introduction into the use of various internet databases and the phylogeny program ARB will be demonstrated by individual use of laptops of the institute.

Reader's advisory

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Reference text
6 CP | SE; PR | 1. or 3. FS | Brinkhoff

Modullevel

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Seminar (1 SPPW); practical course (4 SPPW)

Vorkenntnisse / Previous knowledge

Examination
Time of examination
Type of examination

Final exam of module
Announced during the course.
One assessment of examination:
Portfolio (seminar presentation, written protocol)
Protocol (75 %), seminar presentation (25 %).
Active participation (Active and documented participation in practical courses [labs, exercises, seminars, field trips] and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Course type
Comment
SWS
Frequency
Workload attendance

Seminar
1.00

9 / 22
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

70 h
mar580 - Profile Module Microbial ecology of marine sediments

<table>
<thead>
<tr>
<th>Module label</th>
<th>Profile Module Microbial ecology of marine sediments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar580</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master's Programme Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Bert Engelen</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>Lecture: Microbial ecology</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students know how to</td>
</tr>
<tr>
<td></td>
<td>• sample marine sediments</td>
</tr>
<tr>
<td></td>
<td>• characterize the cores sedimentologically and biogeochemically</td>
</tr>
<tr>
<td></td>
<td>• collect and analyze porewater</td>
</tr>
<tr>
<td></td>
<td>• determine total cell counts</td>
</tr>
<tr>
<td></td>
<td>• quantify groups of organisms molecular biologically</td>
</tr>
<tr>
<td></td>
<td>• cultivate different physiological groups of bacteria</td>
</tr>
<tr>
<td></td>
<td>• present and discuss scientific results</td>
</tr>
<tr>
<td></td>
<td>• write a scientific protocol</td>
</tr>
</tbody>
</table>

Module contents

Microbial ecology of marine sediments: The physiological diversity of microorganisms and their spatial distribution within marine sediments are demonstrated according to chemical and physical parameters. Different physiological groups are analysed along the sediment column of intertidal sandflat or beach. Sediment sampling is performed at the back barrier area of the island 'Spiekeroog' at the beginning of the course. Oxygen penetration, porewater sulfate and methane concentrations are measured down to a depth of app. 5 meters. As microbiological parameters, total cell numbers are counted and the numbers of archaea and bacteria are calculated after quantitative PCR (qPCR). More specifically, the relative amounts of sulfate reducers and methanogens are also determined by qPCR targeting key-genes for sulfate reduction and methanogenesis. Furthermore, every single group of students will specifically enrich one physiological type of microorganisms from distinctive sediment layers. Microbial growth and activity are monitored over the whole period of the course. Accompanying the course, all participants will give a talk to introduce 'their' physiological group concerning its ecology, physiology, and strategies for a specific enrichment. All the data and observations of the single groups will be combined at the end of the course to draw an overall picture of microbial diversity and the occurrence of the different physiological groups corresponding to relevant geochemical gradients.

Reader's advisory

Links

Language of instruction | English |
Duration (semesters) | 1 Semester |
Module frequency | jährlich |
Module capacity | unlimited |
Reference text | 6 CP | SE; PR | 2. FS | Engelen |
Modullevel | --- |
Modulart | je nach Studiengang Pflicht oder Wahlpflicht |
Lern-/Lehrform / Type of program | Block course, 2 weeks, seminar and laboratory work |

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Announced during the course.</td>
<td>One assessment of examination: Portfolio (seminar presentation, written protocol) Protocol (100 %), seminar presentation (no mark). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload attendance</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

70 h
mar600 - Profile Module Methods in Aquatic Microbial Ecology

Module label: Profile Module Methods in Aquatic Microbial Ecology
Module code: mar600
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Microbiology (Master) > Mastermodule

Contact person:
- Module responsibility: Meinhard Simon
- Module counseling: Thorsten Henning Brinkhoff

Entry requirements:
For the practical course lecture: Methods in Aquatic Microbial Ecology

Skills to be acquired in this module:
- Analyze bacterial substrates at ambient concentrations such as dissolved amino acids and carbohydrates by high performance liquid chromatography (HPLC), organic carbon by TOC and POC/PON analyser and the composition of the pool of dissolved organic matter by Fourier-Transform Ion Cyclotron Resonance Mass spectrometry (FT-ICR-MS).
- Determine bacterial cell numbers by flow cytometry and epifluorescence microscopy and to analyse these data by image analysis.
- Extract bacterial DNA from water and sediment samples.
- to amplify bacterial genes by specific primers and PCR.
- Assess bacterial communities by culture-independent methods such as denaturing gradient gel electrophoresis.
- present and discuss scientific results
- write a scientific protocol
- The students gain competences in:
 - Understanding how to analyse dissolved substrates of heterotrophic aquatic bacterial communities by state of the art approaches.
 - How to assess the abundance of aquatic bacterial communities by state of the art approaches.
 - Analyzing the composition of bacterial communities by PCR-based culture-independent approaches.

Module contents:
Methods in Aquatic Microbial Ecology: The course starts with a lecture introducing basic issues of aquatic microbial ecology with an emphasis on methodological aspects. This lecture is completed before the practical work starts.
During the practical course of a block of two weeks the participants carry out analyses and experiments on:
- determining the concentration of dissolved organic substrates (amino acids, carbohydrates, dissolved and particulate organic carbon),
- the abundance of bacterial communities in aquatic systems
- The composition of bacterial communities in environmental samples by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA targeted gene fragments.

The main emphasis is on analyses and approaches of bacterial communities in the water column.

Reader's advisory:
Lecture notes, available on Stud.IP

Links:

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text:
6 CP | SE; PR | 1. or 3. FS | Simon
Modullevel: ---
Modulart: Wahlpflicht / Elective
Lern-/Lehrform / Type of program:
Seminar (1 SPPW); practical course (4 SPPW)

Vorkenntnisse / Previous knowledge:

Examination:
Time of examination:
Type of examination:
Final exam of module:
One assessment of examination:
 Portfolio (seminar presentation, written protocol)
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol (100 %), seminar presentation (no mark). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 70 h
mar610 - Profile Module Isolation and characterization of microorganisms

Module label: Profile Module Isolation and characterization of microorganisms
Module code: mar610
Credit points: 6.0 KP
Workload: 180 h
Used in course of study: Master's Programme Microbiology (Master) > Mastermodule

Contact person
- Module responsibility: Bert Engelen

Entry requirements: Microbial Physiology and diversity (M1)

Skills to be acquired in this module:
In this course the students will isolate bacteria and other microorganisms. They will learn classical microbiological techniques as enrichment culture, aseptic work, preparation of liquid and solid media, cultivation under oxic and anoxic condition, on agar plates and in deep agar dilution, description of microbes by techniques as staining, microscopy, microphotography.

Module contents:
Isolation and characterization of microorganisms: Seminar
Prior to the laboratory work the participants shall read literature about first isolation, description and current studies on their target organisms and present this and their isolation strategy in the seminar. During the course and at the end, results and a possible molecular identification of isolates will be presented and discussed.

Practical work: Every student prepares media and agar plates required for the isolation of the different target organisms. If pure cultures have been isolated, they should be transferred to long-term storage on agar and in liquid nitrogen. Sampling sites and different stages of the enrichment and isolation are documented by macro- and microphotography and described in the report. Finally, tests to verify purity of the culture and its identification, as well as a phylogenetic analysis are requested.

Reader's advisory

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: 6 CP | SE; PR | 1. or 3. FS | Cypionka
Modullevel: MM (Mastermodul / Master module)
Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program: Seminar and laboratory work, twice per week, half a day each

Vorkenntnisse / Previous knowledge:

Examination
Time of examination
One assessment of examination: Portfolio (seminar presentation, written protocol)
Protocol (100 %), webpage, seminar presentation (no mark).
Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Final exam of module
Announced during the course.

Type of examination

Course type
Comment
SWS
Frequency
Workload attendance
Seminar
1.00
14 h
Practical
4.00
56 h

Total time of attendance for the module
70 h
mar620 - Profile Module Marine Chemical Ecology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Profile Module Marine Chemical Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar620</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme Microbiology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person
- Module responsibility
 - Peter Schupp
- Module counseling
 - Sven Rohde

Entry requirements
Lecture: Organic chemistry

Skills to be acquired in this module
Students will learn about the chemical properties and major ecological roles of secondary metabolites, how to investigate the secondary metabolites of marine invertebrates and algae, how to analyze secondary metabolite profiles, how to isolates compounds of interest and how to conduct various bioassays to assess potential ecological roles of crude extracts and potentially isolated compounds. Students will also learn how to statistically evaluate their results.

Module contents
Chemical Ecology: The course consists of lectures, followed by laboratory experiments. Students will research about various topics in marine chemical ecology. Laboratory work will include production of extracts from various invertebrates and algae. Extracts will be tested in various feeding assays to assess the chemical properties of extracts. Extracts will also be tested for antimicrobial activity with environmental strains. This includes the culture of test bacteria and antimicrobial assays. Final evaluation will be a laboratory report about the experiments. This will include statistical analysis of their experiments and discussion of their results in the framework of the lectures and seminars presented during the course.

Reader's advisory
Marine Chemical Ecology, McClintock, Baker

Links
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modullevel: MM (Mastermodul / Master module)
- Modulart: je nach Studiengang Pflicht oder Wahlpflicht
- Lern-/Lehrform / Type of program: Compact Course

Vorkenntnisse / Previous knowledge

Examination
- **Time of examination**
- **Type of examination**
 - One assessment of examination: Portfolio (seminar presentation, written protocol)
 - Portfolio (seminar presentation – no mark, written protocol 100%). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
70 h
mar621 - Profile Module Techniques in light microscopy and electron microscopy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Profile Module Techniques in light microscopy and electron microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar621</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>Erhard Rhiel</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>none</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students will learn</td>
</tr>
<tr>
<td></td>
<td>• the basics/theory of scanning electron microscopy (SEM) and transmission electron microscopy (TEM)</td>
</tr>
<tr>
<td></td>
<td>• different sample preparation methods for SEM</td>
</tr>
<tr>
<td></td>
<td>• to operate our scanning electron microscope</td>
</tr>
<tr>
<td></td>
<td>• to operate our critical point drying device</td>
</tr>
<tr>
<td></td>
<td>• to perform sputter coating</td>
</tr>
<tr>
<td></td>
<td>• to perform negative staining TEM</td>
</tr>
<tr>
<td></td>
<td>• to operate our transmission electron microscope</td>
</tr>
<tr>
<td></td>
<td>• to perform immuno-labelling for light microscopy</td>
</tr>
</tbody>
</table>

Module contents

The module "Techniques in light microscopy and electron microscopy" runs over a period of 10 days, distributed over three weeks. On the first day, seminars will introduce into the theory, i.e. of SEM and TEM. The remaining 9 days are for practice. The main topics of the course are: basic principles and functioning of light and electron microscopes, sample preparation, fixation, low temperature SEM, low vacuum SEM, negative staining TEM, and immuno-labelling for light microscopy.

Reader's advisory

will be announced

Links

Language of instruction | English
Duration (semesters) | 1 Semester
Module frequency | jährlich
Module capacity | unlimited
Reference text | 6 CP | SE; PR | 1. or 3. FS | Rhiel
Modullevel | MM (Mastermodul / Master module)
Modulart | je nach Studiengang Pflicht oder Wahlpflicht

Lern-Lehrform / Type of program

Seminar and laboratory work, at three days for three weeks

Vorkenntnisse / Previous knowledge

Examination

Time of examination | Type of examination
Final exam of module | after delivery of the two course assessments | One assessment of examination: (seminar presentation, poster).
Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module | 70 h
mar630 - Research Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar630</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master's Programme Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Bert Engelen</td>
</tr>
<tr>
<td></td>
<td>• Lehrende der Mikrobiologie</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>1 main and 1 profile module</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students are able to work (under guidance) on an ambitious research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.</td>
</tr>
<tr>
<td>Module contents</td>
<td>The contents concern variable recent scientific questions on a high scientific level.</td>
</tr>
<tr>
<td>Reader’s advisory</td>
<td>project-specific, will be announced</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Seminar (2 SPPW); Practical work (4 SPPW)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Announced during the course.</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td></td>
<td>Two assessments of examination:</td>
</tr>
<tr>
<td></td>
<td>Written protocol and / or written English thesis,</td>
</tr>
<tr>
<td></td>
<td>presentation</td>
</tr>
<tr>
<td></td>
<td>Quality of the scientific performance and thesis (75 %),</td>
</tr>
<tr>
<td></td>
<td>Final seminar and public defense (25 %), Active</td>
</tr>
<tr>
<td></td>
<td>participation (Active and documented participation in</td>
</tr>
<tr>
<td></td>
<td>practical courses (labs, exercises, seminars, field</td>
</tr>
<tr>
<td></td>
<td>trips) and courses. These include e.g. the delivery</td>
</tr>
<tr>
<td></td>
<td>of exercises, writing a lab report or seminar</td>
</tr>
<tr>
<td></td>
<td>presentations according to the advice of the course</td>
</tr>
<tr>
<td></td>
<td>supervisor.)</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Seminar</td>
<td>6.00</td>
</tr>
<tr>
<td>Practical</td>
<td>12.00</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td>252 h</td>
</tr>
<tr>
<td>Frequency</td>
<td>84 h</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>168 h</td>
</tr>
</tbody>
</table>
mar640 - Research Project

Module label: Research Project
Module code: mar640
Credit points: 12.0 KP
Workload: 360 h
Used in course of study: Master's Programme Microbiology (Master) > Mastermodule

Contact person
Module responsibility
- Bert Engelen
Module counseling
- Lehrende der Mikrobiologie

Entry requirements
1 main and 1 profile module

Skills to be acquired in this module
The students are able to work (under guidance) on an ambitious research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.

Module contents
The contents concern variable recent scientific questions on a high scientific level.

Reader's advisory
project-specific, will be announced

Language of instruction: English
Duration (semesters): 2 Semester
Module frequency: halbjährlich
Module capacity: unlimited
Modullevel: MM (Mastermodul / Master module)
Modulart: Pflicht / Mandatory

Lern-/Lehrform / Type of program
Seminar (2 SPPW); Practical work (4 SPPW)

Vorkenntnisse / Previous knowledge

Examination
Time of examination: Announced during the course.
Type of examination: Two assessments of examination:
Written protocol and / or written English thesis, presentation
Quality of the scientific performance and thesis (75 %),
Final seminar and public defense (25 %).

Course type
Comment
SWS
Frequency
Workload attendance
Seminar
6.00
84 h
Practical
12.00
168 h

Total time of attendance for the module
252 h
mar622 - Profile Module R programming for (meta)-genomic sequence analysis

Module label: Profile Module R programming for (meta)-genomic sequence analysis
Module code: mar622
Credit points: 6.0 KP
Workload: 180 h
Used in course of study: Master's Programme Microbiology (Master) > Mastermodule

Contact person
- Module responsibility
 - Liliana Cristina Moraru
- Authorized examiners
 - Liliana Cristina Moraru

Entry requirements: The course „Introduction in sequencing and sequence analysis“. Previous programming experience is not required.

Skills to be acquired in this module:
DNA sequencing has become a routine method in microbiology research. Most of the times, sequence analysis requires knowledge of a programming language. One of the programing languages most used for this purpose is R. The course will cover the following topics:
I. programming in R using an integrated development environment (RStudio)
II. working with strings (stringr package)
III. working with lists and data frames (readr and dplyr package)
IV. sequence analysis (seqinr, Bioconductor packages: Biostrings, GenomicRanges, Decipher)
V. (meta)-genomic and data visualization (ggplot2, Gviz)
VI. Creating sequence / metadata databases
VII. Accessing and mining sequence / metadata databases though R based web applications (Shiny, DT and Shinyjs packages)
VIII. reporting in R (Rmarkdown and Knitr packages)
IX. managing code (Roxygen2 package)
X. microbial genome annotation using R

Module contents:
R programming for (meta)-genomic sequence analysis will run over a two weeks period. A single, introductory lecture will be offered within the first day of the course. Then, the course will be structured in programming exercises which cover all topics at point 12. The exercises are designed to exemplify the use R programming within the framework of microbial (meta)-genome analysis. In addition to the teacher –student sessions, the students will work on individual projects. Each student will receive a short microbial genome (e.g. viral genome), and will analyze it by building custom, self-programmed pipelines. The output from the individual projects will consist in a analysis report prepared in Rmarkdown and Knitr packages. The report will include both the R code and the genome analysis results.

Reader's advisory:
will be announced

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: once a year
Module capacity: 15 (Proportionale Aufteilung zwischen Master MUWI und Master Microbiology)

Modulelevel: AC (Aufbaucurriculum / Composition)
Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Seminar and computer lab, 2 continuous weeks

Vorkenntnisse / Previous knowledge
Teilnahme an mar454 Einführung in die DNA-Sequenzierung und Sequenzanalyse. Grundlagen der Programmierung in R, Grundlagen der Molekularen Taxonomie

Examination
Time of examination: Announced during the course.
Written protocol (80%) and class participation (20%).

Course type
Comment
SWS Frequency Workload attendance
Seminar
2.00 SuSe 28 h
Practical
2.00 SuSe 28 h

Total time of attendance for the module: 56 h
Abschlussmodul

mam - Master´s Thesis Module

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master´s Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme Microbiology (Master) > Abschlussmodul</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>Bert Engelen</td>
</tr>
<tr>
<td></td>
<td>Lehrende der Mikrobiologie</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>Skills to be acquired in this module</td>
</tr>
<tr>
<td></td>
<td>The students are able to work (under guidance) on an extended research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.</td>
</tr>
<tr>
<td>Module contents</td>
<td>The contents concern variable recent scientific questions on a high scientific level</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Links</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Seminar (2 SPPW); Practical work (28 SPPW)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>