Mastermodule

pre311 - Renewable Energy Basics

Module label: Renewable Energy Basics
Module code: pre311
Credit points: 6.0 KP
Workload: 180 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in
Module responsibility
- Carsten Agert
- Joachim Peinke
Module counseling
- Tanja Behrendt
- Robin Knecht
- Hans-Gerhard Holtorf
- Jörg Ohland
- Paul Ziethe

Entry requirements
Skills to be acquired in this module
After completing the module, the student will
- have a good understanding of the physical principles of Renewable Energy Technologies
- be able to apply principal mathematics related with the underlying physical laws and rules to measure and solve problems during their further studies
- have a good understanding of the fundamentals of electrical circuits and related physical laws
- have a good understanding of the fundamentals of electrical machines and the interaction of electrical components of the electric grid
- have a good understanding of the basic concepts of the photovoltaic effect in semi-conductors
- be familiar with the measurement procedures needed for the winter lab experiments in the subject related modules.
- be familiar with working and studying in intercultural teams
- be familiar with the experimental set-ups of the PPRE lab
- understand to relate physical, engineering, and mathematical laws to models of energy supply technologies.
- be able to establish simple models and measurement strategies to investigate the behaviour of the respective models.
- be familiar with the principles of scientific working

Module contents
- Renewable Energy Basics
 - Thermodynamics
 - Hydrodynamics
 - Black and Grey Body Radiation
 - Property of (humid) air
 - Heat Transfer
- Economic Evaluation of Investments
- Winter Introductory Laboratory
 - Simple electrical circuits
 - Inner resistance of power sources
 - Measurement of time depending signals
 - Measurement of temperature and radiation
 - Introduction of standard sensors in radiation and temperature measurement
- Electrical Power Systems
 - Fundamentals in AC/DC
 - Fundamentals of magnetic fields
 - Transformers
 - DC machines
 - Asynchronous-machines
 - Synchronous machines
- Semi-Conductor Physics
 - Definition of semi-conductor
 - Crystal Lattice
 - Atom models
 - Chemical bonding
 - Quantum mechanics
 - Photoelectric effect
 - pn-Junction
 - Solar cell

Literaturempfehlungen
Labuhn, Dirk, Rombert, Oliver, Keine Panik vor Thermodynamik, ISBN 978-3-8348-0180-7, Vieweg, Merz, Hermann, 2002: Electric machines and drives, fundamentals and calculation examples for beginners; VDE-Verlag,
Oelert, Gerhard, Economic issues of renewable energy systems : a guide to project planning; ISBN, Roßdorf TZ Verlag
Sørensen, Bent, 2003: Renewable energy. Its physics, engineering, use, environmental impacts, economy and planning aspects; 2nd ed., Acad. Press.
Taylor, John Robert, 1997: An introduction to error analysis the study of uncertainties in physical measurements; Univ. Science Books; Sausalito, California; 2. ed..
General books on experimental laboratory work and report writing:
Kirkup, Les, 1994: Experimental methods an introduction to the analysis and presentation of data; Brisbane, Wiley.
Kulschewski, Udo, Knecht, Robin and colleagues, update 2013: Reader for the Introductory Lab Course: AC/DC principles, fast signals, power, measurement strategies, sensors in RE and measurement devices

Links
Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Modullevel MM (Mastermodul)
Modulart Pflicht

Vorkenntnisse / Previous knowledge

Examination Prüfungszweiten Type of examination
Final exam of module RE Basics Physics: After end of lectures (end of October) RE Basics Physics (25%): Oral exercise (1 hour)
Semiconductor Physics: After end of lectures (mid- December) Semiconductor Physics (25%): Written exam (0.5 hours)
Electrical Power Systems: After end of lectures (mid-January) Electrical Power Systems (25%): Written exam (0.5 hours)
Solar Spectrum Lab: During Semester Solar Spectrum Lab (25%): Written report (10 - 20 pages)

Course type Seminar
SWS
Frequency
Workload attendance 0 h
Module label
Energy Meteorology & Storage Technologies

Module code
pre314

Credit points
7.0 KP

Workload
210 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Module responsibility
- Carsten Agert
- Detlev Heinemann

Module counseling
- Carsten Agert
- Robin Knecht
- Robert Steinberger-Wilckens

Entry requirements

Skills to be acquired in this module
- After completing this module, students will have a critical understanding of the conditions concerning the availability of solar radiation
- have a good understanding of fundamental atmospheric processes
- understand the close interaction of radiation with the atmosphere and the constraints on wind flows relevant for wind power generation
- will be able to apply basic radiation laws and to practically perform simple wind power assessments
- have a good understanding of various concepts of electrical storage systems and state of the art technical developments
- be able to critically understand the efficiency of conversion steps in storing and activation of energy
- have an overview of the electrochemical, thermodynamic, engineering, and materials science basics of Fuel Cell and Hydrogen technologies, their development status, and their applications areas
- have learned about the sensitivity of sensors
- have understood the performance of a battery/load system and are able to perform state of charge measurements to express the performance of a battery

Module contents

Solar Energy Meteorology:
- Radiation laws
- Solar geometry
- Interaction of solar radiation with the atmosphere
- Climatology of solar radiation
- Solar radiation modelling and measurements

Wind Energy Meteorology:
- Origin of atmospheric air flow, energy balance of the atmosphere
- Basic physics of atmospheric motion
- Wind climatology: Atmospheric circulation, local wind systems
- Wind in the atmospheric boundary layer (characteristics, vertical profile)
- Wind energy resource assessment and measurements

Electrical Energy Storage Technologies:
- Primary and secondary batteries
- redoxflow batteries
- super-capacitors

Non-electrical storage concepts:
- fly wheels
- adiabatic-compressed air storage
- superconductors
- pumped storage systems

„Bridging technologies“ to heat storage:
- Heat pumps and Combined heat and power systems (CHP’s)

Fuel Cells and Hydrogen:
- Introduction and technology overview
- Hydrogen generation, handling and storage
- hydrogen applications and markets
- Low Temperature Fuel Cells
- High Temperature Fuel Cells
- Fuel Cells Market Introduction

Lab Work:
- Solar Spectrum
- Lead-Acid Battery

Literaturempfehlungen

- http://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/fuel%20cells/FCHandbook7.pdf; last...
access: May 2014
IEA: World Energy Outlook, release 2013 (http://www.worldenergyoutlook.org/), last access: May 2014

Links

Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Modullevel MM (Mastermodul)
Modulart Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination Prüfungszeiten Type of examination
Final exam of module Energy Meteorology: At the end of lecture period (end of January)
Energy Storage: At the end of lecture period (end of January)
Hydrogen & Fuel Cells: After end of lectures (mid-January)
Battery Lab: During Semester
Energy Meteorology (35%): Written exam (1.5 hours)
Energy Storage (35%): Written exam (1.5 hours)
Hydrogen & Fuel Cells (15%): Written exam (0.5 hours)
Battery Lab (15%): Written report (10 - 20 pages)

Course type Seminar

SWS

Frequency

Workload attendance 0 h
pre315 - Energy Systems & Society

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy Systems & Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre315</td>
</tr>
<tr>
<td>Credit points</td>
<td>4.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>- Carsten Agert</td>
</tr>
<tr>
<td></td>
<td>- Detlev Heinemann</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>- Michael Golba</td>
</tr>
<tr>
<td></td>
<td>- Simone Malz</td>
</tr>
</tbody>
</table>

Entry requirements

Skills to be acquired in this module
- After the completion of this module the students will
- have a critical understanding of political decision making processes, lobby groups and administrative hurdles in realisation of energy policy
- have a good understanding of factors other than technical influencing future energy scenarios depending on regional and national conditions
- have a good understanding of the structure of the global energy system
- be able to critically interpret energy statistics and to identify different stages of energy conversion
- be familiar with all available energy resources and their future role in the global energy system
- be familiar with the instrument of energy scenarios and able to interpret their results
- be able to critically follow scientific discussions in the physical background and impacts of global climate change
- understand basic economic concepts
- understand the organization of a market economy
- know the relevance of competition and monopoly
- understand the role of regulation for energy markets
- be able to undertake a desk-top research on a complex topic
- be able to give a presentation on an individual country (or region), focusing on renewable energy
- know about several other countries' and regions' situation
- to perform team research
- be able to present in front of an audience and to moderate a discussion

Module contents

Energy Systems
- basic terminology on energy units
- definition and discussion of various forms of energy
- overview of energy resources and reserves
- the global energy situation (energy consumption, energy balances, noncommercial uses of energy)
- energy scenarios (methodologies, main results for possible energy futures)
- techno-economic methods and aspects of energy use (energy and exergy analyses, life cycle analysis, external costs, etc.)
- human-made greenhouse effect

Energy Economics
- the ten principles of economics
- the role of costs for decision making
- markets, competition, monopoly
- regulation and environmental policy
- investment decision, finance and risk management

Country Report
- analysis and presentation of an individual country or region
- geographic, climatic, historic, economic and political situation
- focus on (renewable) energy matters
- team research and presentation, followed by a discussion (moderated by team)

Literaturempfehlungen

Blok, Kornelis, 2007: Introduction to Energy Analysis, Techne Press, Amsterdam
World Energy Assessment Overview: 2004 Update: Energy and the Challenge of Sustainability; UNDP (Ed.):
<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Modullevel</td>
</tr>
<tr>
<td>Modulart</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
</table>
| Final exam of module | Energy Systems: At the end of lecture period (end of January)
 | Energy Economics: After end of lectures (mid-December)
 | Country report: During Semester | Energy Systems (40%): Written exam (1.5 hours)
 | Energy Economics (25%): Written exam (0.5 hours)
 | Country report (35%): Written report 15 – 20 pages
 | Presentation (20 min plus 10 min discussion) |

Course type

| Seminar |

SWS

<table>
<thead>
<tr>
<th>Frequency</th>
</tr>
</thead>
</table>

| Workload attendance | 0 h |
Module: pre325 - Wind Potential, Aerodynamics & Loading of Wind Turbines

Module label: Wind Potential, Aerodynamics & Loading of Wind Turbines

Module code: pre325

Credit points: 7.5 KP

Workload: 225 h

Used in course of study: Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

- At the completion of this module, the student will:
 - possess advanced knowledge on wind potential, aerodynamics and loading of wind turbines
 - be skilled in simulation programs for design and control of Wind Turbines (GH Bladed), practical experience
 - be skilled in wind potential evaluation, wind farm design and environmental impacts using simulation programs (GH WindFarmer),
 - have an understanding of economic parameters for a successful project realisation

At the completion of this module, the student will:

- possess advanced knowledge on wind potential, aerodynamics and loading of wind turbines
- be skilled in simulation programs for design and control of Wind Turbines (GH Bladed), practical experience
- be skilled in wind potential evaluation, wind farm design and environmental impacts using simulation programs (GH WindFarmer),
- have an understanding of economic parameters for a successful project realisation

Module contents

1. Introduction
 - Status of Wind Energy
 - Status of European Wind Energy and R&D
2. Advanced Wind Structure and Statistics
 - Gusts and gust probability distributions
 - Effects of topography
3. Evaluation of Wind Energy Potential
 - Wind modelling in flat and complex terrain
 - Wind energy siting approaches
4. Wind Turbine Aerodynamics
 - Advanced methods
 - Aerodynamic stall
 - Unsteady aerodynamics
 - Vortex wake structure
 - Advanced wake models
 - Optimum design of wind turbine blades
5. Static and Dynamic Loading of Wind Turbines
 - Aerodynamic and gravity loading
 - Inertial and structural loads
 - Aeroelastic modelling
 - Fatigue of wind turbine blades

Literature recommendations

Links

- **Language of instruction**: English
- **Duration (semesters)**: 1 Semester
- **Module frequency**: jährlich
- **Module capacity**: unlimited
- **Modullevel**: MM (Mastermodul / Master module)
- **Modulart**: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge

Examination

- Prüfungszeiten
- Type of examination

Final exam of module

- Exam week (end of May)
- Written exam (3 hours)
<table>
<thead>
<tr>
<th>Course type</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>
pre36 - Wind Turbine Design, Electrical & Control Issues, Certification

<table>
<thead>
<tr>
<th>Module label</th>
<th>Wind Turbine Design, Electrical & Control Issues, Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre326</td>
</tr>
<tr>
<td>Credit points</td>
<td>7.5 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>225 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

- possess advanced knowledge on wind turbine design, electrical and control issues
- be skilled in Wind potential evaluation, Wind farm design and environmental impacts using simulation programs (GH WindFarmer), practical experience
- be skilled in performance testing and modelling of wind turbines

Module contents

1. Electrical Conversion Systems
 - Synchronous and induction generators
 - Direct drive generators
 - Constant and variable speed systems
2. Wind turbines control
 - Aerodynamic power control (stall, pitch, yaw)
 - Electromagnetic torque control
 - Control – dynamic analysis and stability
 - Control strategies
3. Design of wind turbines
 - Important factors
 - Design options
 - Design parameters
 - Design of components
 - System design
 - Megawatt scale design
 - Offshore design
4. Performance Testing and Modelling
 - Measurements under controlled conditions
 - Field testing instrumentation
5. Measurements - anemometers - calibration
6. Electrical Integration
 - Weak grids
 - Power quality
 - Network costs and benefits
7. Large scale integration
 - Technical, economical and policy issues
 - Grid connection requirements, infrastructure
 - Economic aspects
8. Standards and Certification
 - WT certification
 - International standards

Literatureempfehlungen

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modulelevel: MM (Mastermodul / Master module)
- Modulart: je nach Studiengang Pflicht oder Wahlpflicht
- Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Exam week (end of May)</td>
<td>Written exam (3 hours)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>
Pre327 - Wind Farm Technology, Economics & Environmental Issues

Module label: Wind Farm Technology, Economics & Environmental Issues
Module code: pre327
Credit points: 7.5 KP
Workload: 225 h

Used in course of study:
- Master’s Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module:
At the completion of this module, the student will:
- possess advanced knowledge on wind farm design
- possess advanced knowledge on economics and environmental issues
- be skilled in wind farm design and environmental impacts using simulation programs (GH WindFarmer), practical experience
- have an understanding of economical parameters to successful project realisation

Module contents

1. Wind Farm Technology Issues
 - Wind exploitation in wind farms
 - Energy predictions and optimization
 - Balance of plant
 - Wind farms electrical design
 - Wind Farm design, wake effect (simple and advanced wake models, numerical methods - CFD approach)
2. Economics of WT and Externalities
 - Calculation methods
 - Current plant costs
 - Wind energy prices
 - The value of wind energy
 - External costs
 - Future price trends
3. Environmental Issues
 - Environmental benefits
 - Environmental effects
 - Amenity (land use, visual impact)
 - Technical analysis of noise and electromagnetic interference
 - Ecology (birds)
 - Consumption of energy and materials
4. Market development and status of industry
 - Characteristics of the EU industry
 - Present status of wind power
 - Market description
 - Market predictions
 - Wind energy targets
 - Wind energy market incentives in Europe
5. Offshore
 - Turbine modelling
 - Support structures – foundation
 - Wind farms aspects
 - Grid connections
6. Wind energy in urban areas
7. Wind forecast
 - Introduction to Coupled Ocean / Atmosphere Mesoscale Prediction System (COAMPS)

Literatureempfehlungen

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
<table>
<thead>
<tr>
<th>Modullevel</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Exam week (end of May)</td>
<td>Written exam (3 hours)</td>
</tr>
</tbody>
</table>

Course type

| Seminar |

SWS

Frequency

| Workload attendance | 0 h |

pre38 - Mini Project & Wind Farm Study

<table>
<thead>
<tr>
<th>Module label</th>
<th>Mini Project & Wind Farm Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre328</td>
</tr>
<tr>
<td>Credit points</td>
<td>7.5 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>225 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This module is split in two parts. The first one is the Mini Project and the second is the Wind Farm Study. During the mini-project students are skilled in preparation, writing and presentation of a scientific project, of their choice. They learn how to make a bibliographic research, organise their references, focus on a special topic, describe the problem, collect data, and draw conclusions. Finally, they gain experience on presentations. Students are encouraged to connect their mini-project topic with their internship. In parallel, during the wind farm study, students make their own study on the design of a wind farm. Individual data are provided, together with the necessary computational tools to be used in the various steps of the study (Wind data, wind turbine, energy calculations, Wind farm layout, Integration issues and financial evaluation)</td>
</tr>
</tbody>
</table>
| Module contents | 1. Mini Project
Students are encouraged to realize a mini project in a subject of their interest. Through this project, students are focus on a special topic of wind energy:
- Aerodynamics / Aero-elasticity / Aero-acoustics / Loads,
- Wind forecasting / capacity credit (short term – long term),
- Hybrid solutions for isolated systems,
- Wind farms design / wake effect,
- Small scale wind turbines for rural/urban applications
- Financial issues / External costs / Green certificates / CO2 Emissions taxes
- Control
- Analysis of market development
- Off shore (design, development, wind assessment)
- Measuring methods and monitoring
- Grid integration / electrical issues
- Operation and damages
- Environmental issues
The typical form of the mini-project’s report submitted is:
- Abstract – key words
- Introduction / scope /objectives
- Bibliographic research
- Methodology
- Computational part
- Results
- Discussion / conclusions
2. Wind Farm study
The steps of the wind farm study is consists of:
- Wind data analysis (statistics, wind rose design),
- Wind turbine design for the specific site using Blade Element Momentum theory
- Energy calculations for the specific wind turbine and wind data, using a cost model for the minimization of the LCOE
- Wind farm’s layout and wake effect calculation
- Integration issues for specific autonomous power system (wind energy curtailment, capacity credit)
- Financial evaluation (IRR, NPV, PBP)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module Level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of Program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Mini Project: Submission deadline end of May</td>
<td>Mini Project (50%): Written report up to 3,500 words, Presentation (15-20 minutes presentation plus discussion)</td>
</tr>
<tr>
<td></td>
<td>Wind Farm Study: Submission deadline end of April</td>
<td>Wind Farm Study (50%): Written report (15-20 pages)</td>
</tr>
</tbody>
</table>

Course type

- Seminar

SWS

Frequency

Workload attendance

- 0 h
Module label
Ocean Energy Resources

Module code
pre331

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module
- At the completion of this module, the student will:
 - have an understanding of the physical mechanisms in the ocean which are on the basis of the generation of surface waves, tides and currents, and their effects, as well as the biological processes that may affect or be affected by ocean energy devices.
 - be familiar with the statistic description of waves and currents
 - be able to use the statistical information in order to make evaluation of the energy resource
 - be able to use GIS for site selection characterization.

Module contents
- Introduction to the ocean environment: ocean water and geology; ocean circulation and stratification; ocean habitat; ocean economy.
- Ocean surface waves: linear wave theory (regular and random waves); wave spectrum; wave energy resource: parametrical characterisation of ocean waves, nearshore wave transformation, wave measurement and modelling.
- Other sources of ocean energy: ocean tidal currents (current measurement; current turbulence; current energy resource); ocean thermal energy conversion; ocean salinity gradient energy resource.
- Site selection and characterization for ocean energy systems: criteria on energy resource, expected cost levels, water depth, seabed geology and ecology, distance to shore, ports, O&M bases and electrical grid, marine environmental issues.

Literature recommendations

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modulart
Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten
Type of examination
Final exam of module
- Exam: end of lecture period (early June)
- Report: deadline end of May
- Written exam (60%): 2.5 hours
- Written report (40%): essay on a chosen topic, 10-20 pages

Course type
Seminar

SWS

Frequency

Workload attendance
0 h
Modelling and Control of Ocean Energy Systems

Module code: pre332
Credit points: 6.0 KP
Workload: 180 h

Skills to be acquired in this module:
- be familiar with the linear hydrodynamic theory of wave energy systems
- be familiar with the hydrodynamic theory of marine current turbines (BEM)
- be introduced to advanced numerical hydrodynamic modelling of wave and current systems and control simulation
- be familiar with experimental testing and monitoring of OE systems
- acquire basic knowledge of other forms of ocean energy and their systems as OTEC and salinity gradients.

Module contents:
- Other types of energy systems: Ocean Thermal Energy Conversion (OTEC). Energy from salinity gradients. Laboratory
- Wave Flume of the Civil Engineering Department of IST: Characterization of systems of regular and irregular 2D waves. Energy spectra. (Duration 3 h).
- Wave Flume of the Civil Engineering Department of IST: Characterization of a floating body response RAO in a system of regular 2D waves. (Duration 3 h).

Literature recommendations:
Lecture Notes. To be produced.

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Module level: MM (Mastermodul / Master module)
Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge:

Examination:
- Final exam of module:
 - Written exam (Wave Energy): early April
 - Written exam (Marine Current Turbines): early June
 - Written report (Lab): mid-May
 - Written exam (40%): Wave Energy, 2.5 hours
 - Written exam (50%: Marine Current Turbines, 2.5 hours
 - Written report (10%): Lab report, 10 - 20 pages
 - Type of examination: 2.5 hours

Course type: Seminar

SWS
Frequency
Workload attendance: 0 h
Module label: Ocean Energy Systems Technologies
Module code: pre333
Credit points: 7.5 KP
Workload: 225 h

Skills to be acquired in this module:
- be familiar with the state of the art of electro-mechanical power take-off equipment used in wave energy converters and marine current turbines;
- be familiar with mooring and anchoring systems;
- be familiar with the design and configuration of farms;
- be capable to distinguish the different components and designs of offshore electrical grids;
- acquire basic knowledge on the requirements to deploy, operate and maintain the wave and current energy system;
- be aware of maritime safety issues.

Module contents:
- Principle of operation and components of air turbines, water turbines, high-pressure hydraulic systems, linear and rotating electrical generators, and energy storage in ocean energy.
- Classification of offshore structures; loads, cost and materials of mooring and anchoring systems; description of anchoring and foundations systems; taut and slack-mooring systems; and mooring configurations in arrays.
- Principles of interference of WEC arrays and layout optimization methods.
- Analysis of tidal turbines arrays.
- Offshore electrical grid structure and components, cable technologies, electrical designs (HVDC vs AC), interaction with the local electricity network, integration into the National grid, examples/case studies.
- Routine and non-routine offshore operations; management systems; maintenance procedures, risk assessment and inspection plans; and case studies.
- Introduction to offshore operations; vessels, equipment and personnel; method planning and permitting; principles, legislation and standards of safety management.
- Laboratory:
 - Fluid Mechanics Laboratory of the Mechanical Engineering Department of IST: Testing of an air turbine for use in OWC systems. (Duration 3 h).
 - Electrical Machinery Laboratory of the Electrical and Computer Engineering Department of IST: laboratory practice on electrical generators. (Duration 3 h).

Literature recommendations:
Carbon Trust: Guidelines on design and operation of wave energy converters, 2005.
R. E. Harris et al: Mooring systems for wave energy converters: A review of design issues and choices.

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Module level: MM (Mastermodul / Master module)
Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge:

Examination: Prüfungszeiten
Type of examination: Written exam (3 hours)

Course type: Seminar

SWS
Frequency
Workload attendance: 0 h
Module label Economics, Policy and Environment
Module code pre334
Credit points 4.5 KP
Workload 135 h
Used in course of study Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule
Ansprechpartner/-in
Entry requirements
- At the completion of this module, the student will:
 - be familiar with the basic economic analysis of ocean energy systems including the cost, financing and economic evaluation
 - acquire basic knowledge on the general policy issues regarding ocean energy systems and more detailed knowledge on the licensing and permitting procedures for installation of OE systems and enabling mechanisms as funding, feed-in tariffs and tax incentives
 - be able to perform simple environmental impact studies for OE systems.
Module contents
- Marine spatial planning, concession regimes of marine areas; consenting and licensing of marine farms; feed-in tariffs, green certificates, tax incentives and other financial support mechanics.
- Economic analysis of a marine farm: present and future cost of energy (LCOE, externalities) - the role of offshore energy; characterization of offshore renewable costs (CAPEX and OPEX); project financing: principles (equity, debt ratio), parameters (discount rate, return period, NPV, IRR), tools (Retscreen, etc.) and risk assessment.
- Environmental and socio economic impact assessment and monitoring: EIA objectives, process and requirements; public consultation and conflict of uses management; environmental monitoring; life-cycle assessment.
Literatureempfehlungen
- Ernst & Young and DECC (UK): Cost of and financial support for offshore wind, 2009.
Links
Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Modullevel MM (Mastermodul / Master module)
Modulart je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program
Vorkenntnisse / Previous knowledge
Examination
- Final exam of module
 - Exam: end of lecture period (early June); Report: deadline end of May
 - Written exam (60%): 2.5 hours
 - Written report (40%): essay on a chosen topic, 15-20 pages
Course type Seminar
SWS
Frequency
Workload attendance 0 h
pre35 - Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre335</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

With the completion of this module, the student will bring into practice the knowledge acquired through a case study in the form of a specific small project.

Module contents

This course integrates the knowledge previously acquired by the students regarding the resource evaluation, and the conversion processes. At the end of the course each student should deliver an outline project to explore wave energy in a given site and with a given technology.

Literaturempfehlungen

Literature of the other modules

Links

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Modullevel

MM (Mastermodul / Master module)

Modulart

je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

Deadline: End of June

Written report & Presentation: 30 pages written report; 20 min presentation plus 40 min discussion

Course type

Seminar

SWS

Frequency

Workload attendance

0 h
Skills to be acquired in this module

- have a critical understanding of the physical principles relating to the operation and design of photovoltaic cells.
- be able to compare and analyse the design and operation of the main types of photovoltaic cells.
- have a critical understanding of the effect of material purity and crystallinity on the device performance.
- be able to compare and evaluate different methods for the fabrication of photovoltaic cells in terms of device properties and manufacturing issues.
- have a critical understanding of the principles of operation and design of photovoltaic modules.
- be able to compare and evaluate methods for the fabrication of photovoltaic modules, including performance and manufacturing issues.

Module contents

1. **Physics of Solar Cell Devices**
 - Solar spectrum, solar constant and air mass.
 - Important semiconductors. Important solar cell devices.
 - Drude theory. Breakdown of classical theory. Quantum theories of conduction: E-k curves, energy bandgap and effective masses, direct and indirect transitions.
 - Carrier statistics in equilibrium - intrinsic and extrinsic behaviour.
 - Carrier transport, mobilities and diffusion coefficients, scattering mechanisms. Hall effect.
 - Non-equilibrium behaviour: direct, indirect and surface recombination, carrier lifetime and diffusion length.
 - Current density and continuity equations, examples of solutions.
 - Optical and thermal properties of semiconductors. Antireflection coatings. p-n junction in equilibrium: built in voltage, depletion region and depletion capacitance. Derivation of I-V characteristics in the dark.
 - Variations of photocurrent and open circuit voltage with incident light intensity. Optimum energy bandgap of a solar cell.
 - Loss mechanisms. Introduction to tandem/ multijunction concepts.
 - Real diodes: recombination and generation in the depletion region, effects of series and leakage resistance on ideal behaviour. Schottky diodes and Ohmic contacts. Interface states.
 - Heterojunctions: Anderson model, current transport models, heterojunction window effect.
 - Effects of temperature and radiation on solar cell performance.

2. **Solar Cell Fabrication Technologies**
 - Introduction: Important semiconductors and solar cell devices.
 - Important semiconductor parameters. Effects of lattice vibrations, impurity atoms and other crystal imperfections on these parameters.
 - Purification of silicon: chemical, zone refining and gettering. Segregation coefficient.
 - Crystal growth: Bridgmann methods, Czochralski method and Floating Zone Methods.
 - Advanced epitaxial growth methods: MBE, MOCVD, LPE AND VPE.
 - Low cost thin film deposition methods: thermal evaporation methods, sputtering methods and wet chemical methods, e.g electrodeposition, autocatalytic deposition, spray pyrolysis and screen printing.
 - Compensation doping: alloying, solid state diffusion and ion implantation. Dielectric deposition - thermal oxidation of silicon, LPCVD and PECVD silicon oxide and nitrides.
 - Photolithography. Etching - wet and dry methods.
 - Overview of characterisation techniques for semiconductor materials and cells.
 - Overview of design of silicon, III-V and thin film solar cells for terrestrial and space applications and the design and fabrication of photovoltaic modules made from these cells.

Literatureempfehlungen

- Proceedings of IEEE Photovoltaic Specialist Conferences.
- Proceedings of European Photovoltaic Solar Energy Conferences.

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modulart: MM (Mastermodul / Master module)
- je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the semester.</td>
<td>Written exam (60%, 3 hours) Laboratory Reports (40%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload attendance</td>
</tr>
</tbody>
</table>

pre32 - Advanced Photovoltaic Cell Design

Module label
Advanced Photovoltaic Cell Design

Module code
pre32

Credit points
5.0 KP

Workload
150 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module
- After completing the module, the student will be able to
 - Critically appraise the choice of semiconductors used and the design and fabrication methods used to produce an advanced PV device.
 - Critically appraise the characterisation methods used with semiconductor materials and with PV devices.
 - Perform a literature review on advanced PV devices to a professional standard.
 - Present data and information both verbally and in the written form to a professional standard.

Module contents

1. Introduction
 - Flat plate modules. Concentrator solar cells. Multijunction concepts.
 - Overview of types of solar cell developed - status of the technologies.
2. Advanced Devices
 - Polycrystalline silicon.
 - Space applications. Physics of multijunction cells. Quantum well devices.
 - Thermophotovoltaic devices.
3. Advanced Characterisation Methods
 - Material characterisation: X-ray diffraction, electron and ion beam characterisation methods, optical characterisation, Van der Pauw length.
 - Device Characterisation: DLTS, photoluminescence and PAS.
 - Solar simulators.
 - Measurement of fill-factor, solar conversion efficiency and spectral response.
 - I-V-T and C-V-f measurements. Radiation damage
4. Literature Review
 - This will be undertaken for one of the following topics: crystalline silicon devices, III-V devices or thin film devices.

Literaturempfehlungen
- Journals of „Solar Energy Materials and Solar Cells” and „Progress in Photovoltaics”.
- Proceedings of IEEE Photovoltaic Specialist Conferences.
- Proceedings of European Photovoltaic Solar Energy Conferences.

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modullevel
MM (Mastermodul)

Modulart
Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten
At the end of the semester

Type of examination
Written report (literature review): The module assessment is in the form of a review of approximately 3,000 words, chosen by the student from a list of PV device categories.

Course type
Seminar

SWS

Frequency

Workload attendance
0 h
pre353 - Photovoltaics: Economics, Policy and Environment

Module label
Photovoltaics: Economics, Policy and Environment

Module code
pre353

Credit points
5.0 KP

Workload
150 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module
After completing the module, the student will be able to:
- Critically analyse the international policies relating to photovoltaics and other energy technologies focusing on the strategic, environmental and economic implications of these policies
- Perform an economic and/or environmental analysis of a photovoltaic system.

Module contents

1. Economic Analysis
- Economic theory - net present value, effect of interest rates, definition of capital and recurrent costs
- Production economics - definition of production costs, economies of scale, projected manufacturing costs
- Subsidies and tariff issues - effect of electricity supply costs on system viability
- Financing mechanisms - review of international financing mechanisms for purchase and operation of systems

2. Policy Issues
- Market development and projections
- Review and appraisal of government policies and market development schemes
- Security of supply
- Climate change issues
- Energy for development - role of photovoltaics

3. Environmental Impact Assessment
- Process definition for module production
- Hazard assessment
- EC environmental directives
- Embodied energy calculations
- Energy payback times and ratios
- Calculation of associated CO2 and other emissions

Literatureempfehlungen

- Journal of "Progress in Photovoltaics"
- Proceedings of European Photovoltaic Solar Energy Conferences
- Proceedings of IEEE Photovoltaic Specialist Conferences
- IEEEXplore database
- Environmental data sources
- Government literature (including European Commission and international) on renewable energy promotion
- IEA Photovoltaic Power Systems Programme reports

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modullevel
MM (Mastermodul)

Modulart
Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten
At the end of the semester

Type of examination
Written report (essay, approximately 3,000 words) and Presentation (10 minutes)

Course type
Seminar

SWS

Frequency

Workload attendance
0 h
pre34 - Photovoltaic System Technology

Module label: Photovoltaic System Technology
Module code: pre354
Credit points: 10.0 KP
Workload: 300 h

Used in course of study:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module:
After completing the module, the student will be able to:
- Assess the system requirements for both grid connected and stand alone applications.
- Design and develop a PV system by evaluating complex customer needs in relation to an application
- Critically evaluate the performance of a PV system in comparison to a theoretical model of such a system, calculating yields and efficiencies
- Analyse the main system losses and compare methods for minimising these for various system designs

Module contents:
1. Basic systems design
 - Photovoltaic (PV) arrays, support structures
 - Electrical Connections and wiring issues
 - BOS components
 - Stand alone and grid connected systems
 - System sizing
2. Stand-alone systems
 - Applications
 - Performance assessment and sizing
 - Standards and regulations
3. Grid connected systems - electrical
 - Inverter systems and electrical supply issues
 - Grid connection regulations
 - Harmonic content, reactive power, and wiring issues
4. Grid connected systems - large scale
 - Design of large scale systems
 - Case studies
5. Grid connected systems - building integrated
 - System design and sizing
 - Energy in buildings and building components
 - Installation and operation
 - Case studies
6. Concentrator systems
 - Design of concentrator systems
 - Operation and maintenance
7. Monitoring and performance analysis
 - Monitoring specifications
 - Yield and performance ratio, and MTBF
 - Operational issues and maintenance
8. Standards and regulations
 - Standards for construction and operation
 - Regulations governing system design and operation
 - Health and safety issues
9. Space systems
 - Array configurations
 - Quality control and assessment
 - Design of systems
 - BOL and EOL design tradeoffs

Literaturempfehlungen:
- Journals: Progress in Photovoltaics, Renewable Energy, Various IEEE journals relating to electrical engineering

Links:
- Language of instruction: English
- Duration (semesters): 1 Semester
<table>
<thead>
<tr>
<th>Module frequency</th>
<th>jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
</tr>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload attendance</th>
<th>0 h</th>
</tr>
</thead>
</table>
Skills to be acquired in this module

After the completion of the module the student will
- be familiar with main storage materials and technologies and will be able to choose which one is the most adapted to a specific solar application.
- have an understanding of the basic physical phenomena relevant to the principles of operation and design of thermal energy storages.
- have an understanding of the principles of operation and design of thermal energy storages.
- have an understanding of the need to define properly the functionalities of the TES.
- acquire the knowledge of the main technologies and materials used in TES.
- acquire the awareness of the importance of considering the relevant integration of TES in the whole process of application.
- acquire the awareness of the importance of strategy and management in the use of TES.
- acquire the knowledge of the main companies involved in the various aspects of TES (material, envelopes, fluids).
- have a critical understanding of the physical principles used in TES.
- be able to compare the design, operation and performances of the main types of TES.
- be able to choose the relevant TES for a particular application.
- be able to highlight the main limitations of a TES.
- be able to avoid the usual mistakes encountered in TES.
- be able to propose companies providing the various components of TES.

Module contents

1. Overview on Thermal Energy Storage (TES)
 - TES definitions
 - TES functionalities
 - TES basic principles
 - TES technologies
 - ES hybridations
 - ES bottlenecks and current research areas
2. Needs of TES in solar applications
 - Resource/demand shift management
 - Thermal protection
 - Thermal regulation
 - Production optimisation
 - Process design optimisation
 - Process management
3. Available technologies (sensible, latent heat, thermochemical)
 - Sensible heat based TES, direct mode.
 - Sensible heat based TES, indirect mode.
 - Latent heat based TES (organic, inorganic)
 - Thermochemical based TES
4. Related materials
 - Low temperature TES materials (sensible heat, latent heat, thermochemical, classifications and properties, characterizations)
 - High temperature TES materials (sensible heat, latent heat, thermochemical, classifications and properties, characterizations)
5. Heat transfer interfaces and fluids
 - Envelops for TES units
 - Insulating materials for TES units
 - Heat transfer fluids for TES
6. Implementation of TES
 - TES integration
 - TES instrumentation
 - TES charge/discharge assessments
7. Management and strategy of TES
 - TES management
 - TES strategy
 - LTA of TES in Solar Applications
8. Related companies and products
 - Companies and products for sensible heat based TES
 - Companies and products for latent heat based TES
 - Companies and products for thermochemical TES
 - Companies and products for envelopes and connections

Literature recommendations

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>MM (Mastermodul)</td>
</tr>
<tr>
<td>Material</td>
<td>Pflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>End of the Semester</td>
<td>Written exam: 2 hours</td>
</tr>
</tbody>
</table>

SWS

<table>
<thead>
<tr>
<th>Course type</th>
<th>Seminar</th>
</tr>
</thead>
</table>

Frequency

<table>
<thead>
<tr>
<th>Workload attendance</th>
<th>0 h</th>
</tr>
</thead>
</table>
Module label
Fundamentals

Module code
pre365

Credit points
7.0 KP

Workload
210 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

- After the completion of the module the student will
- understand the theoretical basis of radiation models to be used in solar engineering processes.
- understand the principles and the modelling approaches of combined heat and mass transfer in solar processes.
- understand the effect of radiation in a solar process.
- understand the radiative heat transfer methods of resolution to be used in solar applications.
- understand the various assumptions and computing efficiency of radiation models.
- understand the models' limitations to practical uses.
- acquire the knowledge of the main radiative properties of materials used in solar processes.
- be aware of the important development in radiation measurement.
- acquire knowledge of the optical measurement issues.
- have a critical understanding of the effect of radiation on fluid flows.
- have a critical understanding of radiation modelling in solar processes.
- have a critical understanding of the methodology that should be used in a practical situation where radiative heat transfer is to be solved, and coupled with other transfer modes.
- be able to compare and evaluate radiation simulation results from different models.
- have a critical understanding of optical properties and their influences on radiation heat transfer.
- will have a critical understanding of optical measurements.

Module contents

1. Radiative heat transfer
 - Fundamentals of Thermal Radiation
 - Radiative Exchange between Surfaces
 - Radiative properties of opaque surfaces
 - View factors
 - Radiative exchange between grey and diffuse surfaces
 - Equation of Radiative Transfer in Participating Media
 - Equation of radiative transfer
 - Formal solutions
 - Boundary conditions
 - Radiative Properties of Participating Media
 - Radiative properties of molecular gases
 - Radiative properties of particulate media
 - Radiative Transfer through Participating Media
 - Collimated irradiation
 - The Two-Flux method
 - The method of Discrete Ordinates
 - The Monte Carlo method
 - The Rosseland approximation
 - The Diffusion approximation
 - High temperature measurements
 - Pyrometry
 - Infrared thermography

2. Combined heat and mass
 - Conduction
 - Fundamental Equations
 - Balance equations
 - Examples
 - Convection
 - Fundamental Equations
 - Forced Convection (resolution of the Couette flow with temperature)
 - Natural Convection (approximation of Boussinesq)
 - Adimensional equations
 - CFD softwares

Literaturempfehlungen

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich
<table>
<thead>
<tr>
<th>Module capacity</th>
<th>unlimited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Written exam : End of the Semester / end of May</td>
<td>Written exam (50%): 2 hours</td>
</tr>
<tr>
<td></td>
<td>Written report : during the semester / February to</td>
<td>Written report (50%): extended laboratory report,</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>10-20 pages</td>
</tr>
</tbody>
</table>

Course type

Seminar

SWS

<table>
<thead>
<tr>
<th>Frequency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>
pre366 - Solar Low Temperature

Module label: Solar Low Temperature
Module code: pre366
Credit points: 7.0 KP
Workload: 210 h

Used in course of study: Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements

Skills to be acquired in this module:
- Understand the principles of operation, design and methods of low temperature solar energy use: building heating and cooling, microgeneration systems.
- Be aware of the potentialities of solar resource for energy saving in building.
- Be aware of the solar heating and cooling technologies.
- Understand the different solar collector technologies.
- Understand the thermodynamics of energy conversion systems.
- Be familiar with the utilisation of different numeric tools for heating systems design, performance evaluation and techno-economic viability.
- Have a critical understanding of the physical principles relating to the operation and design of solar collectors.
- Be able to compare the design and operation of solar heating and/or cooling systems in buildings.
- Will have a critical understanding of the complete system efficiency on the basis of sub-systems efficiency limitation.

Module contents:
1. Solar Collectors theory and technologies
 - The solar resource
 - Direct and indirect irradiance
 - Mask effects
 - Solar collectors theory
 - Plate collectors
 - Evacuated collectors
 - Low concentrated collectors
 - Solar collectors technologies and application
 - Design software for implantation in buildings.
2. Solar Conversion (solar heating/cooling, microgeneration)
 - Thermodynamics optimisation: exergy analysis
 - Potentialities of low temperature solar energy for cooling
 - Potentialities of low temperature solar energy for electricity production
 - Heat driven cooling system theory and technologies
 - Liquid absorption system
 - Solid sorption systems
 - Microgeneration: ORC and Stirling systems

Literaturempfehlungen:

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modullevel: MM (Mastermodul)
Modulart: Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination: Prüfungszeiten
Final exam of module:
- Written exam: End of the Semester / end of May
- Written report: during the semester / February to May
Type of examination:
- Written exam (50%): 2 hours
- Written report (50%): extended laboratory report, 10-20 pages

Course type: Seminar

SWS
Frequency
Workload attendance: 0 h
pre37 - Solar High Temperature

<table>
<thead>
<tr>
<th>Module label</th>
<th>Solar High Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre367</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

At the end of the module the student will
- understand the principles of operation, design and methods of production of concentrated solar plants and the principles of thermochemistry and process engineering to produce either gaseous or liquid fuels using concentrated solar energy and resource of C, H, O elements.
- be aware of the potentialities of concentrated solar resource for energy vectors production (mechanical, electricity, fuels)
- will understand the different solar concentrating systems: linear concentration, point concentration, high concentration systems
- understand the thermodynamics of chemical reactions that lead to fuels production from solar heat.
- be familiar with the utilisation of different numeric tools for CSP design, performance evaluation and techno-economic viability
- have a critical understanding of the physical principles relating to the operation and design of concentrating systems, solar receivers and concentrated solar plants.
- be able to compare the design and operation of concentrating systems, solar receivers and concentrated solar plants.
- have a critical understanding on the influence of the design and performance of concentrating systems on solar receivers.
- have a critical understanding of the thermodynamic limitation of solar fuels production
- have a critical understanding of the complete system efficiency on the basis of sub-systems efficiency limitation.
- be able to compare and evaluate different chemical pathways with respect to solar energy stored in the chemicals and to CO2 mitigation impact.
- have a critical understanding of the principles of solar thermochemical reactor design and modelling.
- be able to compare and evaluate various solar thermochemical and thermodynamic processes.

Module contents

1. Solar concentrating systems and receiver
 - The solar resource for concentrating systems
 - Introduction to concentration optics
 - Linear concentration: trough and linear Fresnel
 - Point concentration: Dish and Tower (Central receiver systems)
 - High concentration systems: solar furnace and compound parabolic concentrator (CPC)
 - Selective surfaces for solar receiver
 - Solar receivers (absorbers) for linear concentrators
2. Solar concentrating systems and receiver
 - Introduction to Concentrating Solar Power (CSP): various options, plants in operation, industry
 - Tools for CSP design and performance evaluation
 - Techno-economics of CSP
 - Case study: Parabolic trough plant
 - Case study: Central receiver plant
 - Case study: Dish-engine plant
 - Cogeneration systems: electricity and heat, electricity and water
3. Solar fuels
 - Thermodynamics of chemical reactions
 - Chemical pathways to hydrogen, methanol and hydrocarbons from water, carbon dioxide and carbonaceous materials
 - Energy and energy balances
 - Energy and material balances when using natural gas, coal and biomass as Carbon resource
 - Principle of Redox reaction to split H2O and CO2
 - Various options for redox reactions
 - Material and separation issues of the various options
 - Thermodynamics and kinetics of the various redox reactions
 - Principles of solar reactors
 - Material issues in solar reactors
 - Concentrating systems for high temperature solar thermochemistry
 - Efficiency of a solar thermochemical process
 - Case study as a function of the reaction temperature
 - Lab-scale and pilot scale development, state of the art
 - Solar thermo-chemistry for industry

Literatureempfehlungen

- Journal of Solar Energy Engineering
- Proceedings of SolarPACES
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Written exam: End of the semester / end of May Written reports: during the semester / February to May</td>
<td>Written exam (33%): 2 hours Written report (33%): extended laboratory report, 10 pages Written report (33%): project report, 30 pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>33 / 68</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>
pre371 - Distributed Generation

<table>
<thead>
<tr>
<th>Module label</th>
<th>Distributed Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre371</td>
</tr>
<tr>
<td>Credit points</td>
<td>2.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>60 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Entry requirements

Skills to be acquired in this module

- By the end of this module, the student will
 - be able to manage theoretical aspects related to power distribution, stability and quality
 - become familiar with the basic theory and practical knowledge about the electric energy
 - get basic knowledge on supply guarantee and power quality topics
 - get basic knowledge on stability issues
 - know the main effects of the introduction of Renewable Energies into the electric grid
 - become familiar with the substations principles
 - get knowledge about the concept of distributed generation and its implications
 - will be able to demonstrate in-depth knowledge of Power Systems operations and Distributed Generation integration in existing grids
 - be able to work effectively as professionals and as team members in order to solve technical problems
 - be able to demonstrate their abilities to communicate effectively in multinational teams

Module contents

- Introduction to electric grid
- Security of supply and grid quality
- Stability
- Electric circuits analysis
- Renewable energy impact on the grid
- Laboratory classes (three-phase systems)
- Laboratory classes (reactive energy compensation)
- Models or patterns of consumption. Response / Demand Management
- Basic concepts of power electronics

Literaturempfehlungen

- M.Paz Comech, M. García-Gracia: Tecnología eléctrica.

Links

Language of instruction

- English

Duration (semesters)

- 1 Semester

Module frequency

- jährlich

Module capacity

- unlimited

Modullevel

- MM (Mastermodul)

Modulart

- Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>After end of lectures of module</td>
<td>Written exam (95%): 2 hours Subject’s work (5%): approx. 4 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)</td>
</tr>
</tbody>
</table>

Course type

- Seminar

SWS

Frequency

- 0 h

Workload attendance

- 0 h
Skills to be acquired in this module

By the end of this subject, students should be able to display a clear understanding of the state of the art of RE power generation technologies, the theoretical aspects of storage technologies and the impact of electric vehicles in the electric grid.

The student will get a suitable knowledge about the following topics:
- Distributed Generation main concepts
- New generation technologies
- Wind power generation
- Biomass power
- Hydraulic Power
- Storage
- Electric vehicle regarding grid integration

Engineering analysis:
Graduates will be able to demonstrate a clear understanding of the state of the art of RE power generation technologies and related aspects as storage or impact in the electric grid.

Transferable skills:
Graduates will be able to work effectively as a professional and as team member in the resolution of technical problems. Also, graduates will demonstrate their abilities to communicate effectively in multinational groups.

Module contents

1. Basics aspects of Distributed Generation
 - Challenges of the SEP operation due to the high penetration of RES
 - Challenges and technological trends in the renewable energy grid integration
 - Advantages and disadvantages of distributed generation
 - Optimization of the integration of distributed generation
 - Marine and offshore technology generation and market
 - Visit to PV system facility
 - Applications of hydrogen and visit to the Hydrogen Foundation
 - Visit to a hydroelectric plant
 - Electric Vehicle
 - Wind prediction techniques

2. Storage
 - State of the art storage
 - Batteries
 - Flywheel
 - Storage systems based on ultra-capacitors

Literaturempfehlungen

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modulart
Pflicht

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten

Final exam of module
After end of lectures of module
Written exam (42.5%): 2 hours
Subject’s work (7.5%): approx. 4 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)
Presentation (50%): 20 minutes (developed topic)

Course type
Seminar

SWS
<table>
<thead>
<tr>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 h</td>
</tr>
</tbody>
</table>
Module label: Control Techniques and Renewable Energy Integration Systems

Module code: pre373

Credit points: 5.5 KP

Workload: 165 h

Used in course of study: Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Skills to be acquired in this module:
By the end of this module, students should be able to manage the theoretical and practical aspects related to power electronics, with an emphasis in the analysis of the operation of specific devices used to integrate RE. They should also be able to evaluate the requirements, design and optimise Micro Grids.

At the completion of this module, the student will:
- Become familiar with the AC/DC Drives control systems (multilevel converters, PWM, etc…)
- Get basic knowledge on the technological aspects of power electronic systems connection
- Get knowledge about reactive power compensation
- Be introduced to FACTS Technology

Engineering analysis:
Graduates will be able to formulate and solve engineering problems related to the control of power systems connected to the grid. Also, the will be able to design and optimise Micro Grids.

Investigations:
Graduates will be able to evaluate the requirements to implement Micro Grids.

Transferable skills:
Graduates will be able to work effectively as professionals and as team members to solve technical problems related to the integration of RE in electric grids. Also, graduates will demonstrate their abilities to communicate effectively in multinational teams.

Module contents:
1. Control of AC/DC drives
 - Necessity of power electronics: solar and wind generation, storage, dip and reactive power compensation, DC transport…
 - Modelling and simulation of power electronics systems
 - Conversion DC/DC (Solar): topology, operation and current control
 - Vectorial modelling of three phase systems
 - Control of permanent magnets wind turbines
 - Conversion DC/AC three phase
 - Control of active and reactive power of three phase systems connected to grid
 - Dip and interruptions compensation: DVR
 - Characterization techniques: harmonics, THD, power factor…
 - Overview of other power systems

2. Active network devices and control
 - Control system for small wind turbines
 - Power inverter design
 - Microgrids
 - Theory and operation principles of FACTS
 - FACTS implementation and technology (Series / Shunt compensation)
 - Applications and simulation of power electronics systems using PSCAD/EMTDC
 - Modelling of thyristor-based static Var compensator
 - Modelling of GTO-Based STATCOM -Modelling of VSC-Based HVD link
 - Modelling and performance of SSCC in wind energy application

Literature recommendations:

Links

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: jährlich

Module capacity: unlimited

Module level: MM (Mastermodul)

Module type: Pflicht

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>After end of lectures of module</td>
<td>Written exam (40%): 2 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subject’s work (20%): approx. 8 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation (40%): 20 minutes (developed topic)</td>
</tr>
</tbody>
</table>

Course type
Seminar

SWS

Frequency

<table>
<thead>
<tr>
<th>Workload attendance</th>
<th>0 h</th>
</tr>
</thead>
</table>
pre374 - Power Grid Analysis and Studies

Module label: Power Grid Analysis and Studies
Module code: pre374
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

By the end of this module students should be able to acquire relevant data to evaluate grid power quality, to model permanent and dynamic transient regimes of electric grid elements and to plan and optimise grid design. Specifically, the student will:
- be able to perform different studies (permanent, dynamic or transitional regimes) to undertake in electric grids to ensure correct planning and operation
- get basic knowledge on grid modelling (static and dynamic)
- be able to perform stability studies
- get to know different aspects about power supply quality
- be able to perform an optimal sizing of renewable energies installations

Engineering analysis:
Graduates will be able to formulate and solve engineering problems related to Power Supply Quality. Investigations:
Graduates will be able to acquire relevant data to evaluate grid power quality.
Engineering design:
Graduates will be able to model permanent and dynamic transient regimes of electric grid elements, also to plan and optimise grid design.

Transferable skills:
Graduates will be able to work effectively as a professional and as team member in the resolution of technical problems related to integration of RE in electric grids. Also, graduates will demonstrate their abilities to communicate effectively in multinational groups.

Module contents

1. Electric system modelling
 - Introduction to the modelling and simulation of electric systems
 - Per unit system
 - Permanent regime simulation studies: load flows, short-circuits, sequence networks
 - Transient regime modelling: lines, transformer, SEP stability, generation
 - Modelado de sistemas eléctricos en régimen transitario.
 - RE integration analysis

2. Quality of supply
 - Grid Codes and dynamic models for different wind turbines
 - Variable frequency drive
 - Slow voltage variations
 - Voltage fluctuations Flicker
 - Voids voltage and short cuts
 - Voltage pulses
 - Harmonic distortion
 - Voltage Imp balances
 - Network quality and renewable energy
 - Power quality analysers

Literaturempfehlungen

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modullevel: MM (Mastermodul)
Modulart: Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination / Prüfungszeiten
- Final exam of module: After end of lectures of module

Type of examination
- Written exam (50%): 2 hours
 Subject’s work (10%): approx. 8 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)
 Presentation (40%): 20 minutes (developed topic)
<table>
<thead>
<tr>
<th>Course type</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>
pre375 - Smart Grids

<table>
<thead>
<tr>
<th>Module label</th>
<th>Smart Grids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre375</td>
</tr>
<tr>
<td>Credit points</td>
<td>4.5 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>135 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
</tbody>
</table>

Entry requirements

Skills to be acquired in this module

By the end of this module, students should be able to program and protect smart grids. Student will get a suitable knowledge on:
- smart grid concept and development
- protection system in electrical power systems
- telecommunication infrastructure in smart grids

Engineering design:
Grades will be able to design engineering solutions to the challenge of programming smart-grids. They will be able to do the complex task of coordinating protective devices for RE, integrate mini and micro generation in distribution grids or plan and optimise primary-secondary distribution systems.

Transferable skills:
Grades will be able to work effectively as a professional and as team member in the resolution of technical problems related to integration of RE in electric grids. Also, graduates will demonstrate their abilities to communicate effectively in multinational groups.

Module contents

1. Programming of intelligent networks
 - Smart Grids from the point of view of the network operator (Demand Management, Electric Vehicle, Storage...)
 - Operation and network planning with quality criteria distribution
 - Optimization Techniques
 - Practice microgrids
2. Protections
 - Introduction
 - Overcurrent protection
 - Distance protection
 - Differential protection
 - Protection coordination
 - Problematic of distributed generation
3. Smart Grids
 - IEC 61850 communications
 - Visit to Red Electrica de Espana control center
 - Visit to UFD facilities: Smart grids projects
 - PLC communications: Malaga Smart city experience
 - Visit to ERZ control center: smart meters

Literaturempfehlungen

Links

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Modullevel

MM (Mastermodul)

Modulart

Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

After end of lectures of module

Written exam (50%): 2 hours
Subject’s work (10%): approx. 4 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)
Presentation (40%): 20 minutes (developed topic)

Course type

Seminar
<table>
<thead>
<tr>
<th>Frequency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>
pre376 - Standards and Electric Markets

<table>
<thead>
<tr>
<th>Module label</th>
<th>Standards and Electric Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre376</td>
</tr>
<tr>
<td>Credit points</td>
<td>2.5 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>75 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module
- By the end of this module, students should be able to display a clear understanding of the different laws and economic regulations ruling distributed generation in liberalised electric markets. Also, they should be able to identify boundaries and opportunities in those markets. At the completion of this module, the student will:
 - become familiar with the basic rules of electric markets
 - get know the standards for RE
 - know the smart grid installations from the economical point of view

Engineering practice:
Graduates will possess a comprehensive understanding of the structure and regulations of local and international electric markets. The economics of distributed generation systems. The state of the art in standards and regulations ruling distributed generation in liberalised electric markets.

Transferable skills:
Graduates will be able to work effectively as a professional and team member in the resolution of technical problems related to integration of RE in electric grids. Also, graduates will demonstrate their abilities to communicate effectively with the engineering community in national and international contexts. They are able to demonstrate awareness of the legal issues and responsibilities of the engineering practice.

Module contents
- The electricity sector: structures and models
- Cost-benefit analysis of investment in RES
- Calculation of tariffs considering quality costs
- Socio-economic impact of Smart Grids
- Impact of high penetration of RES in the electricity market
- Specific regulations for renewable energy

Literaturempfehlungen

Links

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency
- jährlich

Module capacity
- unlimited

Modullevel
- MM (Mastermodul)

Modulart
- Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>After end of lectures of module</td>
<td>Written exam (50%): 2 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation (50%): 20 minutes (developed topic)</td>
</tr>
</tbody>
</table>

Course type
- Seminar

SWS

Frequency

Workload attendance
- 0 h
Module label
- Project

Module code
- pre377

Credit points
- 5.0 KP

Workload
- 150 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module
- **Investigations:** Graduates will be able to search and organise the required information for the report.
- **Transferable skills:** To evaluate students learning process through the development of a subject related to any of the modules in the specialization. Graduates will demonstrate their ability to investigate and recognise the need for lifelong learning.

Module contents
- Students develop a project on any subject, related to any of the modules in the specialization. The issue is approved by a professor who directs and guides the student. Any module coordinator can be director of the project. For evaluation, the student submits a report of the work.

Literatureempfehlungen
- Recommended literature of other modules

Links

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency
- jährlich

Module capacity
- unlimited

Modullevel
- MM (Mastermodul)

Modulart
- Pflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Examination
- Final exam of module
 - After end of modules
 - Written report

Course type
- Seminar

SWS

Frequency

Workload attendance
- 0 h
pre381 - Processes, models & modelling

<table>
<thead>
<tr>
<th>Module label</th>
<th>Processes, models & modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre381</td>
</tr>
<tr>
<td>Credit points</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td></td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>KL</td>
</tr>
<tr>
<td>Course type</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>
Module: Biochemical Conversion

Module Code: pre382
Credit Points: 10.0 KP
Workload: 300 h
Used in Course of Study: Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Module Frequency: 1 Semester
Module Capacity: Unlimited
Module Level: ---
Module Art: je nach Studiengang Pflicht oder Wahlpflicht

Examination
- **Final Exam of Module:** KL
- **Course Type:** Seminar

Previous Knowledge
- **Vorkenntnisse / Previous Knowledge**

Type of Program
- **Lern-/Lehrform / Type of Program:** Seminar

Languages of Instruction

Entry Requirements

Skills to be Acquired in This Module

Module Contents

Literature: Empfehlungen

Links

Examination
- **Prüfungszeiten / Type of Examination:** KL

Workload Attendance: 0 h
pre383 - Thermochemical conversion

<table>
<thead>
<tr>
<th>Module label</th>
<th>Thermochemical conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre383</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- unlimited

Modullevel
- ---

Modulart
- je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KL</td>
</tr>
</tbody>
</table>

Final exam of module

Course type

| Seminar |

SWS

Frequency

Workload attendance
- 0 h
pre384 - New Business

Module label
New Business

Module code
pre384

Credit points
5.0 KP

Workload
150 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction

Duration (semesters)
1 Semester

Module frequency

Module capacity
unlimited

Modullevel
BW (Bereichswahlimodul / Range selection)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module
3 Prüfungsleistungen:
- Referat 1 (Präsentation max. 20 min + Bericht max. 15 Seiten; Gewicht: 20%)
- Referat 2 (Präsentation max. 20 min + Bericht max. 15 Seiten; Gewicht: 40%)
- Präsentation (max. 20 min; Gewicht: 40%)

Course type
Seminar

SWS

Frequency

Workload attendance
0 h
pre355 - Development and Implementation

<table>
<thead>
<tr>
<th>Module label</th>
<th>Development and Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre355</td>
</tr>
<tr>
<td>Credit points</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- unlimited

Modullevel
- BW (Bereichswahlmodul / Range selection)

Modulart
- Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>2 Prüfungsleistungen: Seminararbeit (ca. 3000 Wörter) und Referat (10min Präsentation + 3000 Wörter Bericht). Gewicht je 50%.</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>4.00</td>
<td>SoSe und WiSe</td>
<td>56 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 84 h
Module Information

Pre385 - Sustainable Fuel Supply Chains

<table>
<thead>
<tr>
<th>Module label</th>
<th>Sustainable Fuel Supply Chains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre385</td>
</tr>
<tr>
<td>Credit points</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- Unlimited

Modullevel
- BW (Bereichswahlmodul / Range selection)

Modulart
- Wahlpflicht / Elective

Duration (semesters)
- 1 Semester

Module capacity
- Unlimited

Modullevel
- BW (Bereichswahlmodul / Range selection)

Modulart
- Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>5 Prüfungsleistungen: 2 Klausuren zu je (1,5h, Gewicht: 20%), 3 Referate zu je (Präsentation max. 20 min + Bericht max. 15 Seiten, Gewicht: 20%)</td>
<td></td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2.00</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Exercises</td>
<td>4.00</td>
<td>SoSe und WiSe</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 84 h
pre386 - Biochemical & Thermo-chemical Conversion

Module label: Biochemical & Thermo-chemical Conversion
Module code: pre386
Credit points: 10.0 KP
Workload: 300 h

Used in course of study:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction: German, English

Duration (semesters): 1 Semester

Module frequency

Module capacity: unlimited

Modullevel: BW (Bereichswahlmodul / Range selection)

Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Final exam of module: 4 Prüfungsleistungen: Klausur 1 (1,5h, Gewicht: 20%), Klausur 2 (1,5h, Gewicht: 30%), Referat 1 (Präsentation max. 20 min + Bericht max. 15 Seiten, Gewicht: 20%) und Fachpraktische Übung (Gewicht: 30%)

Course type

Comment

SWS

Frequency

Workload attendance

Lecture

2.00

SoSe und WiSe

28 h

Exercises

4.00

SoSe und WiSe

56 h

Präsenzzeit Modul insgesamt

84 h
pre387 - Power2Hydrogen2Use

Module label: Power2Hydrogen2Use
Module code: pre387
Credit points: 5.0 KP
Workload: 150 h

Used in course of study:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements:

Skills to be acquired in this module:

Module contents:

Literaturempfehlungen:

Links:

Languages of instruction: German, English

Duration (semesters): 1 Semester

Module frequency:

Module capacity: unlimited

Modullevel: BW (Bereichswahlmodul / Range selection)

Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program:

Vorkenntnisse / Previous knowledge:

Examination Prüfungszeiten Type of examination
Final exam of module 2 Prüfungsleistungen: Präsentation (max. 20 min, Gewicht 40%), Fachpraktische Übung (Gewicht 60%)

Course type Comment SWS Frequency Workload attendance
Lecture 2.00 SoSe und WiSe 28 h
Exercises 2.00 SoSe und WiSe 28 h

Präsenzzeit Modul insgesamt 56 h
pre400 - Fundamentals for Renewable Energy

Module label: Fundamentals for Renewable Energy
Module code: pre400
Credit points: 12.0 KP
Workload: 360 h

Used in course of study:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements

Skills to be acquired in this module

Module contents

Literature recommendations

Links

Languages of instruction: German, English
Duration (semesters): 1 Semester

Module frequency

Module capacity: unlimited

Modullevel: BW (Bereichswahlmodul / Range selection)
Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Final exam of module
2 Prüfungsleistungen: Fachpraktische Übungen (Versuchsprotokolle und Übungsaufgaben, Gewicht: 75%) und entweder Hausarbeit (10-15 Seiten) oder Präsentation (15-20 min, Gewicht: 25%)

Course type
Lecture
Exercises
Werkstatt/Labor

Comment
2.00
2.00
4.00

SWS
Frequency
Workload attendance
SoSe und WiSe
28 h
SoSe und WiSe
28 h
SoSe und WiSe
56 h

Präsenzzeit Modul insgesamt: 112 h
pre405 - Energy Resources and Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy Resources and Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre405</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- unlimited

Modullevel
- BW (Bereichswahlimodul / Range selection)

Modulart
- Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module
- 1 Prüfungsleistung: Klausur (2h)

Course type
- Lecture

SWS
- 4.00

Frequency
- SoSe und WiSe

Workload attendance
- 56 h
pre410 - Renewable Energy Technologies I

Module label
Renewable Energy Technologies I

Module code
pre410

Credit points
12.0 KP

Workload
360 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency

Module capacity
unlimited

Modullevel
BW (Bereichswahlimodul / Range selection)

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
2 Prüfungsleistungen: Klausur (3h, Gewicht 75%) sowie Referat (15 min. Präsentation, 15 Seiten Bericht, Gewicht 25%).

Course type
Comment
SWS
Frequency
Workload attendance

Lecture
2.00
SoSe und WiSe
28 h

Exercises
4.00
SoSe und WiSe
56 h

Präsenzzeit Modul insgesamt
84 h

55 / 68
pre420 - Fundamentals

Module label
Fundamentals

Module code
pref420

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency

Module capacity
unlimited

Modullevel
BW (Bereichswahlmodul / Range selection)

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
2 Prüfungsleistungen: Klausur (2h, Gewicht: 50%) und fachpraktische Übung (Versuchspraktikum 10-20 Seiten, Gewicht: 50%).

Course type
Comment
SWS
Frequency
Workload attendance

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
pre421 - Simulation and System Optimization

Module label: Simulation and System Optimization
Module code: pre421
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in:

Entry requirements:

Skills to be acquired in this module:

Module contents:

Literaturempfehlungen:

Links:

Languages of instruction: German, English

Duration (semesters): 1 Semester

Module frequency:

Module capacity: unlimited

Modullevel: BW (Bereichswahlmodul / Range selection)

Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program:

Vorkenntnisse / Previous knowledge:

Examination:

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>2 Prüfungsleistungen: Seminararbeit (20 Seiten, Gewicht: 50%) und fachpraktische Übung (Versuchsprotokoll 10 Seiten, Gewicht: 50%).</td>
<td></td>
</tr>
</tbody>
</table>

Course type:

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
pre422 - Energy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre422</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>BW (Bereichswahlmodul / Range selection)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>3 Prüfungsleistungen: Klausur (3h) und fachpraktische Übung (Versuchsprotokoll 5 Seiten) und Seminararbeit (20 Seiten). Alle Prüfungsleistungen werden zu je 1/3 gewichtet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
pre423 - Materials

<table>
<thead>
<tr>
<th>Module label</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre423</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ansprechpartner/-in</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Skills to be acquired in this module</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module contents</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatureempfehlungen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>BW (Bereichswahlmodul / Range selection)</td>
</tr>
<tr>
<td>Modularart</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>1 Prüfungsleistung: Klausur (2h)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
</tr>
</thead>
</table>

| SWS | 4.00 |
|----------------------|
| Frequency | SoSe und WiSe |
| Workload attendance | 56 h |
pre424 - Project, case study and innovation

<table>
<thead>
<tr>
<th>Module label</th>
<th>Project, case study and innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre424</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- unlimited

Modullevel
- BW (Bereichswahlenmodul / Range selection)

Modulart
- Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Prüfungsleistungen: Klausur (2h, Gewicht: 1/3) und Hausarbeit (30 Seiten, Gewicht: 2/3).</td>
<td></td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

| Präsenzzeit Modul insgesamt | 56 h |
Module Information:

Module label: Introduction to Electric Power Systems and power electronics
Module code: pre430
Credit points: 3.0 KP
Workload: 90 h
Used in course of study: Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements

Skills to be acquired in this module

Module contents

Literature recommendations

Links

Languages of instruction**: German, English

Duration (semesters)**: 1 Semester

Module frequency

Module capacity**: unlimited

Modullevel**: BW (Bereichswahlimodul / Range selection)

Modularten**: Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>2 Prüfungsleistungen: Klausur (2h, Gewicht: 95%), fachpraktische Übung (Übungsaufgabe, Gewicht: 5%)</td>
<td></td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Vorlesung und Übung</th>
</tr>
</thead>
</table>

SWS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>SoSe und WiSe</th>
</tr>
</thead>
</table>

Workload attendance

<table>
<thead>
<tr>
<th>Workload attendance</th>
<th>28 h</th>
</tr>
</thead>
</table>
Module Information

Module label
Distributed energy resources (DER)

Module code
pre431

Credit points
6.1 KP

Workload
183 h

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Ansprechpartner/-in

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency

Module capacity
unlimited

Modullevel
BW (Bereichswahlimodul / Range selection)

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>3 Prüfungsleistungen: Klausur (2h, Gewicht: 42.5%), Präsentation (20min + 10min Diskussion, Gewicht: 50%) und fachpraktische Übung (Übungsaufgabe, Gewicht: 7.5%)</td>
<td></td>
</tr>
</tbody>
</table>

Course type
Vorlesung und Übung

SWS
4.00

Frequency
SoSe und WiSe

Workload attendance
56 h
pre432 - Renewable Energy Integration

<table>
<thead>
<tr>
<th>Module label</th>
<th>Renewable Energy Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre432</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.6 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>168 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>BW (Bereichswahlmodul / Range selection)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>3 Prüfungsleistungen: Klausur (2h, Gewicht: 40%), Präsentation (20min + 10min Diskussion, Gewicht: 40%) und fachpraktische Übung (Übungsaufgabe, Gewicht: 20%)</td>
</tr>
<tr>
<td>Course type</td>
<td>Vorlesung und Übung</td>
</tr>
<tr>
<td>SWS</td>
<td>4.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
pre433 - DER Impact on EPS

<table>
<thead>
<tr>
<th>Module label</th>
<th>DER Impact on EPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre433</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.2 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>156 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>BW (Bereichswahlimodul / Range selection)</td>
</tr>
<tr>
<td>Modulkategorie</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>3 Prüfungsleistungen: Klausur (2h, Gewicht: 50%), Präsentation (20min + 10min Diskussion, Gewicht: 40%) und fachpraktische Übung (Übungsaufgabe, Gewicht: 10%)</td>
</tr>
<tr>
<td>Course type</td>
<td>Vorlesung und Übung</td>
</tr>
<tr>
<td>SWS</td>
<td>4.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload attendence</td>
<td>56 h</td>
</tr>
</tbody>
</table>
pre434 - Smart Grids solutions

<table>
<thead>
<tr>
<th>Module label</th>
<th>Smart Grids solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre434</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.1 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>183 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>BW (Bereichswahlmodul / Range selection)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>3 Prüfungsleistungen: Klausur (2h, Gewicht: 50%), Präsentation (20min + 10min Diskussion, Gewicht: 40%) und fachpraktische Übung (Übungsaufgabe, Gewicht: 10%)</td>
</tr>
<tr>
<td>Course type</td>
<td>Vorlesung und Übung</td>
</tr>
<tr>
<td>SWS</td>
<td>4.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
pre435 - Energetic Markets

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energetic Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre435</td>
</tr>
<tr>
<td>Credit points</td>
<td>4.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Entry requirements

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- unlimited

Modullevel
- BW (Bereichswahlmodul / Range selection)

Modulart
- Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>2 Prüfungsleistungen: Klausur (2h, Gewicht: 50%) und Präsentation (20min + 10min Diskussion, Gewicht: 50%)</td>
</tr>
</tbody>
</table>

Course type
- Vorlesung und Seminar

SWS
- 4.00

Frequency
- SoSe und WiSe

Workload attendance
- 56 h
Abschlussmodul
mam - Master´s Thesis Module

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master´s Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Abschlussmodul</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td></td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>G</td>
</tr>
<tr>
<td>Course type</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>

Abschlussmodul

Module label: Master`s Thesis Module
Module code: mam
Credit points: 30.0 KP
Workload: 900 h
Used in course of study: Master's Programme European Master in Renewable Energy (EUREC) (Master) > Abschlussmodul
Ansprechpartner/-in:
Entry requirements:
Skills to be acquired in this module:
Module contents:
Literatureempfehlungen:
Links:
Languages of instruction:
Duration (semesters): 1 Semester
Module frequency:
Module capacity: unlimited
Modullevel: ---
Modulart: je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program:
Vorkenntnisse / Previous knowledge:
Examination:
Final exam of module: G
Course type: Seminar
SWS:
Frequency:
Workload attendance: 0 h