Modules for Embedded Systems and Microrobotics

Kernmodule

inf900 - Group Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Group Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf900</td>
</tr>
<tr>
<td>Credit points</td>
<td>24.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>720 h</td>
</tr>
</tbody>
</table>

Used in course of study

- Master's Programme Business Informatics (Master) > Kernmodule
- Master's Programme Computing Science (Master) > Kernmodule
- Master's Programme Embedded Systems and Microrobotics (Master) > Kernmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person

- Module responsibility
 - Die im Modul Lehrenden
- Authorized examiners
 - Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module

The students get familiar with different software development aspects in a team. Apart from software engineering knowledge and skills they develop key competences like project management, teamwork, problem solving competence and conflict management.

Additionally, students develop special knowledge, skills and competences from the project group topic.

Professional competence

The students:

- characterise and apply computer science basics (algorithms, data structures, programming, basics of practical, technical and theoretical computer science)
- define and describe essential mathematical, logical and physical basics of computer science
- define and illustrate the core disciplines of computer science (theoretical, practical and technical computer science)

Methodological competence

The students:

- examine problems, use formal methods to phrase and analyze them appropriately
- evaluate problems by the use of technical and scientific literature
- reflect on a scientific topic and write a scientific seminar paper under guidance and present their findings

Social competence

The students:

- integrate criticism into their own actions
- respect team decisions
- communicate with users and experts convincingly

Self-competence

The students:

- take on project management tasks
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently
- recognise their abilities and extend them purposefully
- reflect their self-perception and actions with regard to professional, methodological and social aspects
- develop and reflect self-developed hypotheses to theories independently
- work in their field independently

Module contents

Cooperative development of a large-scale computer science project. This project general includes the (further) development of a hard or software system.

Reader's advisory

According to the assigned task
<table>
<thead>
<tr>
<th>Links</th>
<th>https://www.uni-oldenburg.de/informatik/studium-lehre/infos-zum-studium/projektgruppen-im-masterstudium/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>semi-annual</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Dieses Modul ist im Rahmen der Projekte FiIF und FoL konzipiert worden</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>PG</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>- Programmierkurs</td>
</tr>
<tr>
<td></td>
<td>- Softwaretechnik</td>
</tr>
<tr>
<td></td>
<td>- Soft Skills</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Im Stud.IP nach Bekanntgabe der einzelnen Gruppen und Themen</td>
</tr>
<tr>
<td>Course type</td>
<td>Project group</td>
</tr>
<tr>
<td>SWS</td>
<td>8.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe and WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>112 h</td>
</tr>
</tbody>
</table>
Akzentsetzungsmodul

inf100 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Module label</th>
<th>Human Computer Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf100</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction</td>
</tr>
</tbody>
</table>

Contact person

Module responsibility
- Susanne Boll-Westermann
- Die im Modul Lehrenden

Authorized examiners
- Susanne Boll-Westermann
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module

Professional competence
The students:
- Name the human-computer interaction core principles
- Characterise the basic elements of the human-centered design of interactive systems

Methodological competence
The students:
- Comprehend context of use and user requirements of human-machine interfaces
- Design, develop and evaluate human-machine interfaces
- Conduct experiments with their prototypes

Social competence
The students:
- Implement human-computer interfaces in practical hands-on projects in teams
- Evaluate human-machine interfaces with potential users
- Develop and present solutions for Human-Computer Interaction related problems
- Integrate technical and factual comments into own results

Module contents
The module introduces the field of human-computer interfaces and their historical context. Moreover, it shows motivating examples of human-computer interaction. The module covers the core principles of human-computer interaction. In detail, the module deals with the design concepts of interactive systems: context of use, requirements and task analysis, human perception capabilities, design process, usability, prototyping and evaluation. During the practical project a concrete human-computer interface will be designed, developed and evaluated according to this concepts.

Reader's advisory

- Markus Dahm, Grundlagen der Mensch Computer-Interaktion, Pearson, 2006
- Literature in the reserve shelf in the university bibliography. Link list in Stud.IP.

Links
medien.informatik.uni-oldenburg.de/lehre

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
unlimited
<table>
<thead>
<tr>
<th>Modullevel</th>
<th>AS (Akzentsetzung / Accentuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+P</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Grundkenntnisse Programmierung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The completed practical projects will be presented on a single project day, which will take place at the end of the lecture period. The oral exam takes place within the last two weeks of the lecture period. If necessary, re-examinations will take place at the end of the term. Find out more about the schedule on the websites of the department and in Stud.IP.</td>
<td></td>
</tr>
<tr>
<td>Practical group project which progress has to be presented regularly during the tutorials. Oral exam on the topics of the lecture. Practical project and oral exam count 50% each to the final grade. Both practical project and oral exam have to be passed individually.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Tutorial</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

| Total time of attendance for the module | 56 h |
inf105 - Fault Tolerance in Distributed Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Fault Tolerance in Distributed Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf105</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in course of study | Master's Programme Computing Science (Master) > Praktische Informatik
| | Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule |

Contact person

Module responsibility
- Oliver Theel
- Die im Modul Lehrenden

Authorized examiners
- Die im Modul Lehrenden
- Die Modulverantwortlichen

Module counseling
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module

This module provides knowledge of fault-tolerant distributed systems. The terminology, structure, conception, core challenges and related implementation concepts will be covered in detail.

Professional competence
The students:
- Assess what a fault-tolerant distributed system is and develop awareness of its capabilities
- Name and discuss common implementations of fault-tolerant distributed systems

Methodological competence
The students:
- Reflect the implementation challenges of a distributed system
- Are able to adapt and evolve implementation concepts of fault-tolerant distributed systems in new contexts

Social competence
The students:
- Solve problems in small teams
- Present their solutions to the members of the tutorial
- Discuss their different solutions with members of the tutorial

Self-competence
The students:
- Accept criticism
- Question their initially applied methods for problem solving
- Question their initial solutions in the light of newly learned methods

Module contents

1) Fault, Error, Failure
2) Failure semantics, Fault tolerance
3) Byzantine agreement protocols
4) Stable storage
5) Fail-stop processors
6) Atomic commit protocols
7) Classification of replication control schemes
 - pessimistic vs. optimistic
 - semantic vs. syntactic
 - static vs. dynamic
8) Consistency notions
9) Quality criteria
10) Survey of replication control schemes

5 / 84
11) Design of replication control schemes
12) Unifying frameworks
13) Replication in practice

Reader's advisory

Links
Language of instruction German
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Reference text connectet with:
Betriebssysteme 1 und 2
Betriebssysteme-Praktikum
Verteilte Betriebssysteme
Modulevel AS (Akzentsetzung / Accentuation)
Modulart Wahlpflicht / Elective
Lern-Lehrform / Type of program V+S bzw V+Ü
Vorkenntnisse / Previous knowledge Verteilte Betriebssysteme

Examination
Final exam of module End of lecture period written exam or oral exam or practical work
Course type Comment SWS Frequency Workload attendance
Lecture 2.00 WiSe 28 h
Seminar or exercise 2.00 WiSe 28 h

Total time of attendance for the module 56 h
inf300 - Hybrid Systems

Module label: Hybrid Systems
Module code: inf300
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodulle
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person
Module responsibility
- Martin Georg Fränzle
- Die im Modul Lehrenden

Authorized examiners
- Martin Georg Fränzle
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
The module gives an introduction to hybrid discrete-continuous systems, as arising by embedding digital hardware into physical environments, and it elaborates on state of the art methods for the mathematical modelling and the analysis of such systems. It thus provides central competences for understanding and designing reliable cyber-physical systems.

Professional competence
The students:
- characterise formal models of cyber-physical systems: hybrid automata, hybrid state transition systems
- name domain-specific system requirements: safety, stability, robustness
- name analysis methods: symbolic state-space exploration, abstraction and abstraction refinement, generalized Lyapunov-Methods
- use state-of-the-art analysis tools
- select and apply adequate modelling and analysis methods for concrete application scenarios
- apply methods to reduce large state spaces and reduce infinite-state systems by abstraction
- know the de-facto industry standards for system modelling and are able to apply the corresponding modelling frameworks and tools

Methodological competence
The students:
- model heterogeneous dynamical systems with adequate modelling and design tools, in particular Simulink/Stateflow
- transfer modelling and analysis methods to other heterogeneous domains, e.g. socio-technical systems

Social competence
The students:
- work in teams
- solve complex modelling, design, and analysis tasks in teams

Self-competence
The students:
- reflect their actions and respect the scope of methods dedicated to hybrid systems

Module contents
Embedded computer systems continuously interact with their environment, which generally comprises state- and time-continuous components. The coupling of the embedded system to its environment thus induces complex interleavings between discrete computational and decision processes and continuous processes. The resulting processes are neither amenable to the analytic techniques of continuous control nor of discrete mathematics. They instead require a broader, integrated theory: hybrid discrete-continuous systems. The lectures provide an in-depth introduction into a variety of analysis and design methods of these computer-based
systems and their recent extensions to cyber-physical systems

The accompanying hands-on-project enhances the lecture by developing and using design and verification tools.

Reader's advisory

Links

Languages of instruction: English, German

Duration (semesters): 1 Semester

Module frequency: once a year

Module capacity: unlimited

Modullevel: AS (Akzentsetzung / Accentuation)

Modulart: Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program: V+Ü

Vorkenntnisse / Previous knowledge: Bachelor in Computing Science oder Kenntnisse gewöhnlicher Differentialgleichungen

Examination:

- Type of examination: Final exam of module
- Time of examination: At the end of the lecture period
- Type of examination: Semester project including written work and final presentation

Course type:

- Lecture: 3.00 SWS, SuSe 42 h
- Exercises: 1.00 SWS, SuSe 14 h

Total time of attendance for the module: 56 h
inf301 - Machine-oriented Systems Engineering

Module label	Machine-oriented Systems Engineering
Module code | inf301
Credit points | 6.0 KP
Workload | 180 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobots (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person
Module responsibility
- Alfred Mikschl
- Die im Modul Lehrenden

Authorized examiners
- Alfred Mikschl
- Die im Modul Lehrenden

Entry requirements
Skills to be acquired in this module

The module provides practical relevance to the design of digital embedded systems.

Professional competence
The students:
- characterise the structure of microprocessor systems
- name control aspects of time sensitive external components
- program efficient embedded systems

Methodological competence
The students:
- use specifications from electrical components data sheets

Social competence
The students:
- work in a team
- discuss solutions

Module contents
Embedded systems support complex feedback problems, control problems and data processing tasks. They have an important value creation potential for telecommunications, production management, transport and electronics. The functionality of embedded systems is realised by the integration of processors, special hardware and software. The embedded systems design is influenced by the heterogeneity of system architectures, the complexity of systems and technical and economic requirements.

This module gives an initial review of computer architectures. After that embedded systems are introduced by a specific microprocessor. Furthermore, external hardware will be connected to the microprocessor. Besides this, the design of circuit boards will be discussed. The students will design, develop and implement a circuit layout with CAD and programme this embedded system with a Flash-eprom.

Reader's advisory
Lecturers notes, hardware manuals and data sheets, and development tool manuals

Links
Languages of instruction | English , German
Duration (semesters) | 1 Semester
Module frequency | semi-annual
Module capacity | unlimited
Modulelevel | AS (Akzentsetzung / Accentuation)
Modulart | Pflicht o. Wahlpflicht / compulsory or optioal
Lern-/Lehrform / Type of program | V+P
Vorkenntnisse / Previous knowledge

9 / 84
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio (Design, development and implementation of embedded systems, colloquium)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
Module label
- Fuzzy Control and Artificial Neural Networks in Robotics and Automation

Module code
- inf303

Credit points
- 6.0 KP

Workload
- 180 h

Used in course of study
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungs module
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master's Programme Engineering Physics (Master) > Schwerpunkt: Renewable Energies

Contact person
- Module responsibility
 - Sergej Fatikow
 - Die im Modul Lehrenden
- Authorized examiners
 - Sergej Fatikow
 - Die im Modul Lehrenden

Entry requirements
- Experts in different branches try to approach their application-specific control and information processing problems by using fuzzy logic and artificial neural networks (ANN). The experiences gathered up to now prove robotics and automation technology to be predestined fields of application of both these approaches. The major topics of the course are control problems in robotics and automation technology, principles of fuzzy logic and ANN and their practical applications, comparison of conventional and advanced control methods, combination of fuzzy logic and ANN in control systems. The course gives a comprehensive treatment of these advanced approaches for interested students.

Professional competence
- The students:
 - recognise control problems in robotics and automation technology,
 - name principles of fuzzy logic and ANN and their practical applications,
 - compare conventional and advanced control methods,
 - characterise the combination of fuzzy logic and ANN in control systems

Methodological competence
- The students:
 - will acquire knowledge of the tools, methods and applications in fuzzy logic and ANN
 - deepen their knowledge for the practical use of the given methods
 - can use common software tools for design and application of fuzzy logic and ANN

Social competence
- The students:
 - gain experience in interdisciplinary work
 - are integrated into the recent research work

Objective of the module / skills:

Self-competence
- The students:
 - are able to transfer the gained knowledge for later use in their theses or studies for AMiR
 - can Design (complex) fuzzy logic controller and ANN systems
 - reflect their (control) solutions by using methods learned in this course

Module contents
- Control problems in robotics and automation technology
- Basic ideas of fuzzy logic and ANN
Principles of fuzzy logic
Fuzzy logic of rule-based systems
ANN models
ANN learning rules
Multilayer perceptron networks and backpropagation
Associative networks
Self-organizing feature maps
PID design principles
Design of fuzzy control systems
Fuzzy logic application examples
Design of ANN control systems
ANN application examples
Fuzzy + Neuro: principles and applications

Reader's advisory

Essential:

- Lecture notes (available at the secretariat, A1-3-303) in book form

Recommended:

Secondary Literature:

- Altrock, M. O. R.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
- Kahlerl, J. und Hubert, F.: Fuzzy-Logik und Fuzzy-Control, Vieweg, 1993
- Kratzer, K.P.: Neuronale Netze, Carl Hanser, 1993
- Lawrence, J.: Neuronale Netze, Syntagma Verlag, München, 1992
- Patterson, D.W.: Künstliche neuronale Netze, Prentice Hall, 1996
- Pham, D.T.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
- Schulte, U.: Einführung in Fuzzy-Logik, Franzis-Verlag, München, 1993
- Zakarian, S. Ladewig-Riebler, P. und Thoer, St.: Neuronale Netze für Ingenieure, Vieweg, Wiesbaden, 1998
- Zimmermann H.-J. (Hrsg.): Datenanalyse, VDI-Verlag, 1995

Links

Languages of instruction
English , German

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program
V+Ü

Vorkenntnisse / Previous knowledge
Regelungstechnik

Examination
Time of examination
Type of examination
Final exam of module
At the end of the lecture period until the beginning
Hands-on-exercises and oral Exam
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination of the next semester</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
Inf305 - Medical Technology

Module label: Medical Technology
Module code: inf305
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person:
Module responsibility:
- Andreas Hein

Authorized examiners:
- Andreas Hein
- Die im Modul Lehrenden

Entry requirements:

Skills to be acquired in this module:
Professional competence:
The students:
- Describe medical diagnosis and therapy methods
- Understand the core concepts of computer-assisted medical interventions
- Are aware of the basic concepts and legal conditions of the development of medical devices
- Define the character of medical devices' software parts and implement them
- Assess the complex interaction of medical products and patients
- Get familiar with the development of medical products within a short period of time

Methodological competence:
The students:
- Recognize the interdisciplinary challenges and accordingly exchange information with other disciplines

Social competence:
The students:
- Present solutions for specific questions

Self-competence:
The students:
- reflect their solutions by using methods learned in this course

Module contents:
- Medical areas and areas of application
- Basic requirements for medical systems (hygiene, MPG, technical security, materials)
- Medical systems:
- Functional diagnostics (ECG, EMG, EEG)
- Imaging systems (CT, MRI, ultrasound, PET, SPECT) - Therapy equipment (Laser, RF, Microtherapy)
- Signal processing / monitoring (cardiovascular, hemodynamic, respiratory, metabolic, cerebral)
- Medical Informatics (HIS, DICOM, Telemedicine, VR, image processing).

Reader's advisory:

essential:
- Lecture slides

recommended:

Secondary literature:

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Module level</td>
</tr>
<tr>
<td>Module type</td>
</tr>
<tr>
<td>Learning/Teaching form</td>
</tr>
<tr>
<td>Previous knowledge</td>
</tr>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3.00</td>
<td>WiSe</td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
<td>WiSe</td>
<td>14 h</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf307 - Robotics

Module label
Robotics

Module code
inf307

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person

Module responsibility
- Andreas Hein
- Die im Modul Lehrenden

Authorized examiners
- Die im Modul Lehrenden
- Andreas Hein

Entry requirements

Skills to be acquired in this module

Professional competence

The students:

- Name and know the functions and applications of robot systems
- Characterise the basic concepts to program robot systems
- Differentiate between the interaction of mechanical, electrical and software components

Methodological competence

The students:

- Define characteristics and components of robot systems for a specific application
- Design and implement robot system sub-components
- Design and parameterise simple control structures
- Plan the application of robot systems and derive the requirements
- Model electrical and mechanical systems
- Develop and realise simple robot systems

Social competence

The students:

- Solve robot systems problems in team work

Self-competence

The students:

- Reflect their solutions in reference to robot system methods

Module contents

- Integration in production plants / aims / subsystems
- Architectures / classifications (classification of robots)
- Robot components > Computer systems for programming
 - PA-10
 - Lego Mindstorms
- Basics of kinematics
 - Coordinate transformation, homogeneous coordinates, Coordinate transitions
 - Kinematic equation systems, transformation of vectors
- Kinematic
 - Joint types (manipulators) / Wheels, TCP
 - Denavit-Hartenberg-Transformation
 - Forward calculation
 - Backward calculation
- Sensors
- General properties of sensors, parameter
- Simple optical position sensors
- Inductive-, capacitive- and ultrasonic-sensors
- Distance sensors (laser scanner, triangulation sensors)
- Force sensors
- Sensor data preparation
- Planing / Regulation
 - Overall regulation approach, terms, process- and control functions, PID-controller
 - Planning concepts and approaches (On-Line, Off-Line), planning processes, construction and path planning
- Actuators

Reader's advisory

essential:
lecture nodes

recommended:

Secondory literature:

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
one year

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
Pflicht o. Wahlpflicht / compulsory or optional

Tern-/Lehrform / Type of program
V+Ü

Vorkenntnisse / Previous knowledge

Examination

Time of examination

Type of examination

Final exam of module
At the end of the lecture period
Portfolio: Hands-on exercises, report, and written or oral exam

Course type

Comment

SWS

Frequency

Workload attendance

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3.00</td>
<td>SuSe</td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
<td>SuSe</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
56 h
inf308 - Microrobotics II

Module label: Microrobotics II
Module code: inf308
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master's Programme Engineering Physics (Master) > Schwerpunkt: Laser and Optics

Contact person
Module responsibility:
- Sergej Fatikow
- Die im Modul Lehrenden
Authorized examiners:
- Sergej Fatikow
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
After having given an established introduction in the module "Microrobotics and Microsystem Technology" this lecture offers a further specialisation in microrobotics. Within the course, all relevant areas (among others the research topics of the division "Microrobotics and Control Engineering (AMiR)"") will be presented and analysed. The student will be provided with an insight into current research projects of AMiR and of other research institutes of microrobotics worldwide; here mainly the requirements of industry to microrobots will be discussed. The lecture will be enhanced by practical courses in the research laboratories of AMiR.

Professional competence
The students:
- name and recognise the basic concepts of nanotechnology, in particular, micro- and nanorobotics approaches
- differentiate the development, control and application of micro- and nanorobotics systems
- implement and design application-specific micro- and nanorobotics systems

Methodological competence
The students:
- transfer their control engineering and image processing abilities on interdisciplinary problems
- transfer their hands-on experience to develop controls and applications of microrobotic systems on new tasks

Social competence
The students:
- work in a team

Self-competence
The students:
- reflect their problem-solving behaviour and use hands-on experience to develop, control and application of microrobotics

Module contents
Smart and versatile microrobots; microactuators (piezo-, ferrofluid- and SMA-actuators) for microrobots; real-time image processing in the micro world (SEM, optical microscopy); micro force sensors and tactile sensors for microrobots; microrobot control systems, e.g. neural networks and fuzzy logic; haptic interface for the control of microrobots; neural speech interface for the control of microrobots; robot-based micro- and nanohandling (SEM, optical microscopy); applications: microassembly, nano-testing, cell handling; Micro Air Vehicles (MAVs); multi-robot systems: team behavior, communication, control issues

Reader's advisory
- Lecture notes (can be obtained in secretariate, A1-3-303)
Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>English, German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Mikrorobotik und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Oral Exam and exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3.00</td>
<td>SuSe</td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
<td>SuSe</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
inf311 - Low Energy System Design

Module label: Low Energy System Design
Module code: inf311
Credit points: 6.0 KP
Workload: 180 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person
Module responsibility: Wolfgang Nebel, Die im Modul Lehrenden
Authorized examiners: Wolfgang Nebel, Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
This module introduces the estimation of power dissipation and optimisation.

Professional competence
The students:
- Discuss the fundamental problems of power dissipation
- Characterise the requirements-driven design process of embedded systems
- Name power loss analysis and optimization methods
- Design embedded systems with common design and analysis tools
- Design power-optimized embedded systems

Methodological competence
The students:
- Model systems with a hardware description language
- Analyze and model hardware components
- Perform multi-dimensional optimization of systems

Social competence
The students:
- Implement solutions of given problems in teams
- Discuss their outcomes appropriately

Self-competence
The students:
- Acknowledge the limits of their ability to cope with pressure during the modeling process of systems

Module contents
According to Moore's Law the number of integratable transistors on a computer chip doubles every two years. In addition, new circuits are getting faster and faster. This leads not only to an increased functionality of a system, but it also increases the electrical power consumption.

This electrical power consumption is problematic from two different points of view: Firstly, the electrical power must be supplied. Secondly, the resulting heat has to be dissipated from the system. An increased power consumption always causes lower battery life and higher energy costs. The heat generation reduces the reliability and life of integrated circuits. The cooling (ceramic housings, cooling elements, fans, etc.) increases the system's costs.

Today the development of heat, caused by power dissipation, needs to be considered during the embedded system design process. This knowledge takes the system's reliability and operation costs into account.

This module introduces the estimation of power dissipation and optimisation.

Reader's advisory
- Designing CMOS Circuits for Low Power – Dimitros Soudris, Christian Piguet, Costas Goutis
- Low-Power CMOS VLSI Circuit Design – Kaushik Roy, Sharat C. Prasad
Links

Languages of instruction English, German
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Modullevel AS (Akzentsetzung / Accentuation)
Modulart Pflicht o. Wahlpflicht / compulsory or optional
Lern-/Lehrform / Type of program V+Ü
Vorkenntnisse / Previous knowledge - inf200 Grundlagen der Technische Informatik,
- inf201 Technische Informatik,
- inf203 Eingebettete Systeme I+,
- inf204 Eingebettete Systeme II

Examination

Final exam of module at the end of the lecture period hands-on exercises and oral exam

Course type Comment SWS Frequency Workload attendance

Lecture 2.00 WiSe 28 h
Exercises 2.00 WiSe 28 h

Total time of attendance for the module 56 h
inf350 - Special Topics in ‘Safety-Critical Systems’ I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in ‘Safety-Critical Systems’ I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf350</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
- Module responsibility
 - Andreas Hein
- Authorized examiners
 - Andreas Hein

Entry requirements

Skills to be acquired in this module

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Sicherheitsanalysetechniken“, „Zielarchitekturen Eingebetteter Systeme für Automotive-Anwendungen“, „Modellbasierter Systementwurf“,

Reader’s advisory
As announced in course

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-Lehrform / Type of program
2 Veranst. aus V, Ü, S, P, PR (4SWS)

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
inf351 - Special Topics in 'Safety-Critical Systems' II

Module label
Special Topics in 'Safety-Critical Systems' II

Module code
inf351

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Andreas Hein
- Die im Modul Lehrenden

Authorized examiners
- Andreas Hein
- Die im Modul Lehrenden

Entry requirements
This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:

- support team process by their abilities

Self-competences
The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Sicherheitsanalysetechniken“, „Modellbasierter Systementwurf“, ...

Reader's advisory
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-Lehrform / Type of program
2 Veranst. aus V, S, Ü, P, PR (4SWS)

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>VA-Auswahl</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>SWS 4.00</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
inf352 - Current Topics in 'Safety-Critical Systems' I

Module label
Current Topics in 'Safety-Critical Systems' I

Module code
inf352

Credit points
3.0 KP

Workload
90 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Contact person
Module responsibility
- Andreas Hein
- Die im Modul Lehrenden

Authorized examiners
- Andreas Hein
- Die im Modul Lehrenden

Entry requirements
Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Reader's advisory
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
S oder V (2 SWS)
<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inf353 - CurrentTopics in 'Safety-Critical Systems' II

Module label
CurrentTopics in 'Safety-Critical Systems' II

Module code
inf353

Credit points
3.0 KP

Workload
90 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Andreas Hein
- Die im Modul Lehrenden

Authorized examiners
- Andreas Hein
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:

- communicate with users and experts convincingly

self-competences
The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Reader's advisory
As announced in course

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modularart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
S oder V (2SWS)
<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>Module label</td>
<td>Special Topics in 'Hybrid Systems' I</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Module code</td>
<td>inf354</td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
<td></td>
</tr>
</tbody>
</table>
| Used in course of study | • Master's Programme Computing Science (Master) > Technische Informatik
 • Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule |
| Contact person | Module responsibility
 • Andreas Hein
 • Martin Georg Fränzle
 • Die im Modul Lehrenden
 Authorized examiners
 • Andreas Hein
 • Martin Georg Fränzle
 • Die im Modul Lehrenden |
| Entry requirements | Skills to be acquired in this module
 This module integrates current developments in the field in adequate study courses.
 Professional competences
 The students:
 • define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
 • recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 • identify, structure and solve problems/tasks, also in new or developing subject areas
 • apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 • are aware of the current limits and contribute to the development of computer science research and technology
 • discuss and evaluate recent computer science developments
 Methodological competences
 The students:
 • evaluate and apply tools, technology and methods sophisticatedly
 • combine new and original approaches and methods creatively
 • evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
 Social competences
 The students:
 • support team process by their abilities
 self-competences
 The students:
 • pursue the overall and special computer science development critically
 • implement innovative professional activities effectively and independently |
<p>| Module contents | See assigned course description, e.g. „Modellbasierter Systementwurf“, „Konstruktionsprinzipien ausgewählter Klassen von Fahrzeugfunktionen“ |
| Reader's advisory | As announced in course |
| Links | |
| Language of instruction | German |
| Duration (semesters) | 1 Semester |
| Module frequency | halbjährlich |
| Module capacity | unlimited |
| Modullevel | AS (Akzentsetzung / Accentuation) |
| Modulart | je nach Studiengang Pflicht oder Wahlpflicht |</p>
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>2 Veranst. aus V, Ü, S, P, PR (4SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf355 - Special Topics in 'Hybrid Systems' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Hybrid Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf355</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in course of study | Master's Programme Computing Science (Master) > Technische Informatik
| | Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule |
| Contact person | Module responsibility
| | - Andreas Hein
| | - Martin Georg Fränzle
| | - Die im Modul Lehrenden
| Authorized examiners | - Andreas Hein
| | - Martin Georg Fränzle
| | - Die im Modul Lehrenden
| Entry requirements | This module integrates current developments in the field in adequate study courses.
| Skills to be acquired in this module |
| Professional competences | The students:
| | - define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
| | - recognise and evaluate applied techniques and methods of their subject and are aware of their limits
| | - identify, structure and solve problems/tasks, also in new or developing subject areas
| | - apply state of the art and innovative methods to solve problems, if necessary from other disciplines
| | - are aware of the current limits and contribute to the development of computer science research and technology
| | - discuss and evaluate recent computer science developments
| Methodological competences | The students:
| | - evaluate and apply tools, technology and methods sophisticatedly
| | - combine new and original approaches and methods creatively
| | - evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
| Social competences | The students:
| | - support team process by their abilities
| Self-competences | The students:
| | - pursue the overall and special computer science development critically
| | - implement innovative professional activities effectively and independently

Module contents

See assigned course description

Reader's advisory

As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-Lehrform / Type of program</td>
<td>2 Veranst. aus V, Ü, S, P, PR (4SWS)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf356 - CurrentTopics in 'Hybrid Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>CurrentTopics in 'Hybrid Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf356</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme Computing Science (Master) > Technische Informatik</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td>Contact person</td>
<td>Andreas Hein</td>
</tr>
<tr>
<td>Contact person</td>
<td>Martin Georg Fränzle</td>
</tr>
<tr>
<td>Contact person</td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Authorized examiners</td>
<td>Andreas Hein</td>
</tr>
<tr>
<td>Authorized examiners</td>
<td>Martin Georg Fränzle</td>
</tr>
<tr>
<td>Authorized examiners</td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competences</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students:</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Methodological competences</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students:</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• schedule time processes and resources</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Social competences</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students:</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• communicate with users and experts convincingly</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Self-competences</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students:</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>• develop and reflect self-developed hypotheses to theories independently</td>
</tr>
</tbody>
</table>

Module contents
See assigned course description

Reader's advisory
As announced in course

Links
Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern- / Lehrform / Type of program</th>
<th>S oder V (2SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf357 - Aktuelle Themen aus dem Gebiet "Hybride Systeme" II

Module label
Aktuelle Themen aus dem Gebiet "Hybride Systeme" II

Module code
inf357

Credit points
3.0 KP

Workload
90 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Andreas Hein
- Martin Georg Fränzle
- Die im Modul Lehrenden

Authorized examiners
- Andreas Hein
- Martin Georg Fränzle
- Die im Modul Lehrenden

Entry requirements
Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Reader's advisory
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S oder V (2SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination Time of examination Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period Presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf358 - Special Topics in 'Hardware/Software Systems' I

Module label
Special Topics in 'Hardware/Software Systems' I

Module code
inf358

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Andreas Hein
- Wolfgang Nebel
- Die im Modul Lehrenden

Authorized examiners
- Andreas Hein
- Wolfgang Nebel
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Spezifikation und Modellierung Eingebetteter Systeme“

Reader's advisory
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>2 Veranst. aus V, Ü, S, P, PR (4SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf359 - Spezielle Themen aus dem Gebiet "Hardware-/Software-Systeme" II

Module label: Spezielle Themen aus dem Gebiet "Hardware-/Software-Systeme" II

Module code: inf359

Credit points: 6.0 KP

Workload: 180 h

Used in course of study:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person:
Module responsibility:
- Andreas Hein
- Wolfgang Nebel
- Die im Modul Lehrenden

Authorized examiners:
- Andreas Hein
- Wolfgang Nebel
- Die im Modul Lehrenden

Entry requirements:
Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences:
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences:
The students:
- support team process by their abilities

Self-competences:
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents:
See assigned course description, e.g. „Spezifikation und Modellierung Eingebetteter Systeme“

Reader's advisory:
As announced in course

Links
Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel: AS (Akzentsetzung / Accentuation)

Modulart: je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>2 Veranst. aus V, Ü, S, P, PR (4SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf360 - CurrentTopics in 'Hardware/Software Systems' I

Module label
CurrentTopics in 'Hardware/Software Systems' I

Module code
inf360

Credit points
3.0 KP

Workload
90 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobots (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Andreas Hein
- Wolfgang Nebel

Authorized examiners
- Andreas Hein
- Wolfgang Nebel

Entry requirements

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description, e.g. „Energieeffizienz in der IKT“, „Smart Resource Integration“, ...

Reader's advisory
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern- / Lehrform / Type of program</th>
<th>S oder V (2SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Time of examination</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>At the end of the lecture period</td>
<td></td>
</tr>
<tr>
<td>Presentation or oral exam</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf361 - Current Topics in 'Hardware/Software Systems' II

Module label Current Topics in 'Hardware/Software Systems' II
Module code inf361
Credit points 3.0 KP
Workload 90 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Contact person
- Module responsibility
 - Andreas Hein
 - Wolfgang Nebel
 - Die im Modul Lehrenden
- Authorized examiners
 - Andreas Hein
 - Wolfgang Nebel
 - Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description, e.g. „Energieeffizienz in der IKT“, „Smart Resource Integration“, ...

Reader's advisory
As announced in course

Links

Language of instruction German
Duration (semesters) 1 Semester
Module frequency unregelmäßig
Module capacity unlimited
Modullevel AS (Akzentsetzung / Accentuation)
Modulart je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-Lehrform / Type of program</th>
<th>S oder V (2 SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
info366 - Special Topics in 'Microrobotics and Control Engineering' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Microrobotics and Control Engineering' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf366</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in course of study | • Master's Programme Computing Science (Master) > Technische Informatik
• Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodulle |
| Contact person | Module responsibility |
| | • Andreas Hein |
| | • Sergej Fatikow |
| | • Die im Modul Lehrenden |
| Authorized examiners | • Andreas Hein |
| | • Sergej Fatikow |
| | • Die im Modul Lehrenden |
| Entry requirements | This module integrates current developments in the field in adequate study courses. |
| Skills to be acquired in this module | Professional competences |
| | The students: |
| | • define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general |
| | • recognise and evaluate applied techniques and methods of their subject and are aware of their limits |
| | • identify, structure and solve problems/tasks, also in new or developing subject areas |
| | • apply state of the art and innovative methods to solve problems, if necessary from other disciplines |
| | • are aware of the current limits and contribute to the development of computer science research and technology |
| | • discuss and evaluate recent computer science developments |
| | Methodological competences |
| | The students: |
| | • evaluate and apply tools, technology and methods sophisticatedly |
| | • combine new and original approaches and methods creatively |
| | • evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research |
| | Social competences |
| | The students: |
| | • support team process by their abilities |
| | Self-competences** |
| | The students: |
| | • pursue the overall and special computer science development critically |
| | • implement innovative professional activities effectively and independently |

<p>| Module contents | See assigned course description, e.g. „Nanomontage und Nanohandhabung“ |
| Reader's advisory | As announced in course |
| Links | Language of instruction: German |
| Duration (semesters) | 1 Semester |
| Module frequency | jährlich |
| Module capacity | unlimited |</p>
<table>
<thead>
<tr>
<th>Modullevel</th>
<th>AS (Akzentsetzung / Accentuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>2 Veranst. aus V, S, Ü, P, PR (4SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf367 - Spezielle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" II

Module label: Spezielle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" II

Module code: inf367

Credit points: 6.0 KP

Workload: 180 h

Used in course of study:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person

Module responsibility
- Andreas Hein
- Sergej Fatikow
- Die im Modul Lehrenden

Authorized examiners
- Andreas Hein
- Sergej Fatikow
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Reader's advisory
As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel: AS (Akzentsetzung / Accentuation)

Modulart: je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>2 Veranst. aus V, Ü, S, P, PR (4SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf368 - Aktuelle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" I

Module label
Aktuelle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" I

Module code
inf368

Credit points
3.0 KP

Workload
90 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Andreas Hein
- Sergej Fatikow
- Die im Modul Lehrenden

Authorized examiners
- Andreas Hein
- Sergej Fatikow
- Die im Modul Lehrenden

Entry requirements
This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate
 computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and
 technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- examine tasks with technical and research literature, write an academic article and present their
 solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply
 computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:

- communicate with users and experts convincingly

Self-competences
The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Reader's advisory
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S oder V (2 SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Time of examination</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf369 - Current Topics in 'Microrobotics and Control Engineering' II

Module label
Current Topics in 'Microrobotics and Control Engineering' II

Module code
inf369

Credit points
3.0 KP

Workload
90 h

Used in course of study
- Master’s Programme Computing Science (Master) > Technische Informatik
- Master’s Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Andreas Hein
- Die im Modul Lehrenden
- Sergej Fatikow

Authorized examiners
- Andreas Hein
- Die im Modul Lehrenden
- Sergej Fatikow

Entry requirements

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Reader's advisory
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S oder V (2 SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf374 - Special Topics in 'Automotive' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Automotive' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf374</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule</td>
</tr>
</tbody>
</table>

Contact person

- **Module responsibility**
 - Andreas Hein
 - Martin Georg Fränzle
 - Die im Modul Lehrenden
- **Authorized examiners**
 - Andreas Hein
 - Martin Georg Fränzle
 - Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. „Zielarchitekturen Eingebetteter Systeme für Automotive-Anwendungen“

Reader's advisory

As announced in course

Links

- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: halbjährlich
- Module capacity: unlimited
- Modulelevel: AS (Akzentsetzung / Accentuation)
- Modularart: je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>2 Veranst. aus V, S, Ü, P, PR (4SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf375 - Special Topics in 'Automotive' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Automotive' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf375</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td></td>
</tr>
</tbody>
</table>
 - Master's Programme Computing Science (Master) > Technische Informatik
 - Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule |
| **Contact person** |
 - Module responsibility
 - Andreas Hein
 - Die im Modul Lehrenden
 - Authorized examiners
 - Andreas Hein
 - Die im Modul Lehrenden |
| **Entry requirements** | This module integrates current developments in the field in adequate study courses. |
| **Skills to be acquired in this module** |
 - Professional competences
 The students:
 - define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
 - recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 - identify, structure and solve problems/tasks, also in new or developing subject areas
 - apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 - are aware of the current limits and contribute to the development of computer science research and technology
 - discuss and evaluate recent computer science developments
 - Methodological competences
 The students:
 - evaluate and apply tools, technology and methods sophisticatedly
 - combine new and original approaches and methods creatively
 - evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
 - Social competences
 The students:
 - Support team process by their abilities
 Self-competences++
 The students:
 - pursue the overall and special computer science development critically
 - implement innovative professional activities effectively and independently |
| **Module contents** | See assigned course description |
| **Reader's advisory** | As announced in course |
| **Language of instruction** | German |
| **Duration (semesters)** | 1 Semester |
| **Module frequency** | unregelmäßig |
| **Module capacity** | unlimited |
| **Modullevel** | AS (Akzentsetzung / Accentuation) |
| **Modulart** | je nach Studiengang Pflicht oder Wahlpflicht |
| **Lern-Lehrform / Type of program** | 2 Veranst. aus V, S, Ü, P, PR (4SWS) |
| **Vorkenntnisse / Previous knowledge** |
 - **Self-competences++**
 The students:
 - pursue the overall and special computer science development critically
 - implement innovative professional activities effectively and independently |
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf376 - Current Topics in 'Automotive' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Automotive' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf376</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Used in course of study | Master's Programme Computing Science (Master) > Technische Informatik
 | Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule |
| Contact person | Module responsibility |
| | Andreas Hein |
| | Die im Modul Lehrenden |
| Authorized examiners | Andreas Hein |
| | Die im Modul Lehrenden |
| Entry requirements | Skills to be acquired in this module |
| | This module integrates current developments in the field in adequate study courses. |
| Professional competences | The students: |
| | Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general |
| | Recognise and evaluate applied techniques and methods of their subject and are aware of their limits |
| | Identify, structure and solve problems/tasks, also in new or developing subject areas |
| | Apply state of the art and innovative methods to solve problems, if necessary from other disciplines |
| | Are aware of the current limits and contribute to the development of computer science research and technology |
| | Discuss and evaluate recent computer science developments |
| Methodological competences | The students: |
| | Examine tasks with technical and research literature, write an academic article and present their solutions academically |
| | Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research |
| | Schedule time processes and resources |
| Social competences | The students: |
| | Communicate with users and experts convincingly |
| Self-competences | The students: |
| | Pursue the overall and special computer science development critically |
| | Develop and reflect self-developed hypotheses to theories independently |
| Module contents | See assigned course description |
| Reader's advisory | As announced in course |
| Links | |
| Language of instruction| German |
| Duration (semesters) | 1 Semester |
| Module frequency | unregelmäßig |
| Module capacity | unlimited |
| Modulelevel | AS (Akzentsetzung / Accentuation) |
| Modulart | je nach Studiengang Pflicht oder Wahlpflicht |
| Lern-/Lehrform / Type of program | S oder V (2 SWS) |
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload attendance</th>
<th>28 h</th>
</tr>
</thead>
</table>
inf377 - Current Topics in 'Automotive' II

Module label
Current Topics in 'Automotive' II

Module code
inf377

Credit points
3.0 KP

Workload
90 h

Used in course of study
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Andreas Hein
- Die im Modul Lehrenden

Authorized examiners
- Andreas Hein
- Die im Modul Lehrenden

Entry requirements
Skills to be acquired in this module
- This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Reader's advisory
As announced in course

Links
Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
S oder V (2 SWS)
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Course type</td>
<td>Course or seminar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Wise</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf450 - Correctness of Graph Programs

Module label: Correctness of Graph Programs

Module code: inf450

Credit points: 6.0 KP

Workload: 180 h

Used in course of study:
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Contact person:
Module responsibility:
- Annegret Habel
- Die im Modul Lehrenden

Authorized examiners:
- Andreas Hein
- Die im Modul Lehrenden

Entry requirements:

Skills to be acquired in this module:
The objectives of this module are modelling of systems, system changes and system properties. Introduction to graph programs. Introduction into system correctness. Methods for proving system correctness.

Professional competence:
The students:
- Describe the basics of graph programs and graph properties
- Describe verification procedures of system correctness

Methodological competence:
The students:
- Model systems, system changes and system properties
- Apply the formalism of graph programs

Social competence:
The students:
- Solve problems in a team
- Present and discuss their proposed solutions

Self-competence:
The students:
- Reflect upon their actions with regard to term rewriting systems and the methods of those

Module contents:
The module is an introduction to the modelling of systems, system changes and system properties by means of graphs, graph programs and graph conditions and presents a method for proving correctness of systems with respect to a pre- and a postcondition.

The basic structures used in this lecture are graphs; they are used in practically all domains of computing science for the representation of complex structures. Graph programs are constructed from the core constructs of nondeterministic rule application, sequential composition and iteration and they can effect programmatic changes of a graph structure. One well-known method for determining the correctness of programs with respect to a pre- and a postcondition is based on the construction of a weakest precondition of the postcondition with respect to the program and the attempt to decide whether the given precondition implies the computed weakest precondition.

Reader's advisory:

Links
<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>im 2-Jahres-Zyklus</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Wird oft als Blockveranstaltung angeboten</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AC (Aufbaucurriculum / Composition)</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
</tr>
<tr>
<td>- inf400 Theoretische Informatik I</td>
</tr>
<tr>
<td>- inf401 Theoretische Informatik II</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Will be announced during the course</td>
<td>presentation or oral exam</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3.00</td>
<td>WiSe</td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
<td>WiSe</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

<table>
<thead>
<tr>
<th>Total time of attendance for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>
inf453 - Combination of Specification Techniques

Module label Combination of Specification Techniques
Module code inf453
Credit points 6.0 KP
Workload 180 h

Used in course of study
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Contact person

Module responsibility
- Andreas Hein
- Ernst-Rüdiger Olderog
- Die im Modul Lehrende

Authorized examiners
- Andreas Hein
- Ernst-Rüdiger Olderog
- Die im Modul Lehrende

Entry requirements
inf400/inf401 Theoretische Informatik I and II

Skills to be acquired in this module
Introduction to the specification languages Z for data, CSP for processes, and their combination CSP-OZ for reactive systems with data and process parts.

Professional competence
The students:
- specify data and processes with Z, CSP and CSP-OZ formally
- check data refinement relations formally
- verify CSP-OZ specifications with FDR model checker

Methodological competence
The students:
- are able to integrate complementary specification methods

Social competence
The students:
- work together in small groups to solve problems
- present solutions to problems to groups of other students

Self-competence
The students:
- learn persistence in pursuing difficult tasks
- learn precision in specifying problems

Module contents
The course addresses a research trend in formal methods, the combination and integration of different specification methods. It focuses on a concrete combination CSP-OZ of the specification techniques CSP (Communicating Sequential Processes) for processes and Z and Object-Z for data, respectively. Reactive systems are described by CSP-OZ.

As a preparation, the specification languages Z and CSP are described, followed by the combination CSP-OZ with its process-oriented semantics. The concepts of refinement and inheritance and the possibility of automatic verification of a sublanguage of CSP-OZ with the FDR model checker for CSP will be discussed. Finally, the course explains possibilities of extending CSP-OZ for the specification of time-critical systems.

Topics:
- specification of complex data and operations in Z, type definition and pattern calculations of Z, data refinement
- specifications of communicating processes in CSP, operational semantics of CSP, three abstract semantic models

for CSP: Trace semantics, failures semantics, failures-divergences semantics, process refinement in the above semantics, FDR model checker for CSP
• combined specification method CSP-OZ, transformational semantics as CSP-process, theorems of refinements,

object-oriented concepts of class and inheritance in CSP-OZ

Reader's advisory

Essential:

Recommended:

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel: BC (Basiscurriculum / Base curriculum)

Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge: - inf400 Theoretische Informatik I
- inf401 Theoretische Informatik II

Examination

Time of examination: At the end of the lecture period

Type of examination: exercises and oral exam

Final exam of module

At the end of the lecture period

Workload attendance

Lecture: 3.00 SWS WiSe 42 h
Exercises: 1.00 SWS WiSe 14 h

Total time of attendance for the module: 56 h
inf454 - Communicating and Mobile Systems

Module label: Communicating and Mobile Systems
Module code: inf454
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person:
- Module responsibility: Ernst-Rüdiger Olderog, Die im Modul Lehrenden
 Authorized examiners: Die im Modul Lehrenden, Ernst-Rüdiger Olderog

Entry requirements:
- Introduction to Milner's Calculus of Communicating Systems (CCS) and the ?-Calculus.

Skills to be acquired in this module:

Professional competence:
The students:
- Know the theory of the operational semantics of CCS and the ?-calculus
- Perform equivalence proofs using simulations and bisimulations
- Specify communicating and mobile systems with CCS and the ?-calculus

Methodological competence:
The students:
- Learn about different views on mobility
- Recognize equivalences as formal means for system correctness

Social competence:
The students:
- Work together in small groups to solve problems
- Present their solutions to groups of other students

Self-competence:
The students:
- Learn persistence in pursuing difficult tasks
- Learn precision in specifying problems

Module contents:
Communication is one of the basic concepts of computer science. It occurs between computers in a network as well as between components of a computer. The focus of the course is on Robin Milner's ?-calculus. It enables a new modelling of communication, taking the location of the communication into account.

The ?-calculus can describe the change of data in a computer as well as the sending of messages or even programs along networks like the internet. It is also possible to describe reconfigurable networks. This will be shown using the examples of mobile phones, schedulers, automatic vending machines, data structures, communication protocols, and objects in object-oriented programming. All these applications are backed by the theory of the ?-calculus, which is based on operational semantics and a concept of behavioural equivalence. The theory will be explained in a step-by-step manner.

Topics:
- different views on mobility
- transition systems with simulations and bisimulations
- Milner's Calculus of Communicating Systems (CCS) and Milner's ?-calculus for mobile systems, both with operational semantics, structural congruence, strong equivalence and observational equivalence, relationship between reactions and transitions, solvability of recursive equations
- formal specification of examples of communicating and mobile systems using CCS and the ?-calculus
- proof of strong equivalence and observational equivalence of given processes
• specification of dynamic data structures in the ?-calculus

Reader's advisory

Links
http://csd.informatik.uni-oldenburg.de/

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
irregular

Module capacity
unlimited

Modullevel
AS (Akzentsetzung / Accentuation)

Modulart
Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program
V+Ü

Vorkenntnisse / Previous knowledge
Theoretische Informatik II

Examination
Time of examination
Type of examination
Final exam of module
At the end of the lecture period
written exam or oral exam

Course type
Comment
SWS
Frequency
Workload attendance

Lecture
3.00
SuSe
42 h

Exercises
1.00
SuSe
14 h

Total time of attendance for the module
56 h
inf456 - Real-Time Systems

Module label
Real-Time Systems

Module code
inf456

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobots (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person
Module responsibility
- Ernst-Rüdiger Olderog
- Die im Modul Lehrenden

Authorized examiners
- Die im Modul Lehrenden
- Ernst-Rüdiger Olderog

Entry requirements

Skills to be acquired in this module
Introduction to formal methods of the specification and verification of time sensitive systems and their combinations.

Professional competence
The students:
- Learn about different models of time and real-time properties
- Specify and verify real-time systems
- Model real-time systems using Timed Automata and PLC-Automata
- Apply the model checker UPPAAL for the verification of real-time properties
- Specify real-time systems using the Duration Calculus
- Learn about decidability and undecidability results for real-time systems

Methodological competence
The students:
- Recognize logic and automata as adequate forms for describing real-time systems

Social competence
The students:
- Work together in small groups to solve problems
- Present their solutions to groups of other students

Self-competence
The students:
- Learn persistence in pursuing difficult tasks
- Learn precision in specifying problems

Module contents
Examples of time-critical systems are railway control systems, robots, or even gas burners. It is essential for these systems to comply with certain timing conditions. For example, the control of a railway crossing must close the gates not later than 4 seconds after the sensors have reported an approaching train. If the gates are open, they should stay that way for at least 15 seconds to allow for a safe crossing of vehicles.

Different specification methods have been developed to describe such timing conditions. The Duration Calculus developed by Zhou Chaochen in 1991 is one attractive method. It is a logic combined with a calculus, in which the duration of states can be described. The course will introduce the Duration Calculus and will explain its application by means of examples. As further specification method Timed Automata introduced by Alur & Dill in 1994 will be presented. After the specification of real-time system requirements the verification of programs implementing these requirements will follow. The specification methods of the Duration Calculus and Timed Automata are used to describe the real-time behaviour of these programs. The correctness is then proven on the basis of these behavioral descriptions.

Topics:
- discrete and continuous model of time
- logics and automata models for the specification of real-time systems (predicate logic, Duration Calculus, Timed CTL, Timed Automata, PLC-Automata)
- decidability and undecidability results for real-time systems
- model checker UPPAAL for Timed Automata
- formal specification of real-time systems using Duration Calculus as well as Timed Automata and PLC-Automata
- verification of concrete Timed Automata using the model checker UPPAAL,
- transformation of Duration Calculus for discrete time into regular languages
- implementability of real-time systems on PLC-like hardware

Reader's advisory

essential:

recommended:

Links

Languages of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

irregular

Module capacity

unlimited

Module level

AS (Akzentsetzung / Accentuation)

Modulart

Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program

V+Ü

Vorkenntnisse / Previous knowledge

Theoretische Informatik I + II

Examination

Final exam of module

At the end of the lecture period

Exercises and written or oral exam

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>Frequency</td>
</tr>
<tr>
<td>3.00</td>
<td>SuSe or WiSe</td>
</tr>
<tr>
<td>1.00</td>
<td>SuSe or WiSe</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

56 h
inf458 - Term Rewriting Systems

Module label
Term Rewriting Systems

Module code
inf458

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Contact person
Module responsibility
- Annegret Habel
- Die im Modul Lehrenden

Authorized examiners
- Annegret Habel
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
The objectives of this module are an introduction to (term) rewriting systems, termination and confluence, the undecidable sets of termination and confluence problems, verification procedures of termination and confluence

Professional competence
The students:

- describe the basics of term rewriting systems
- characterise the undecidability of termination and confluence problems
- describe verification procedures of termination and confluence

Methodological competence
The students:

- apply verification procedures of termination and confluence
- apply Huet's completion procedure

Social competence
The students:

- solve problems in a team
- present and discuss their results

Self-competence
The students:

- reflect their actions with regard to term rewriting systems and the methods of those

Module contents
The module is an introduction to term rewriting systems and provides verification procedures for termination and confluence. Term rewriting systems, termination and confluence are introduced, the undecidability of termination and confluence problems and the decidability for a set of special term rewriting systems are shown. For this purpose reduction and simplification orders, critical pairs, orthogonality and Huet's completion procedure are introduced, examined and combined.

Reader's advisory

Links
- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: im 2-Jahres-Zyklus
- Module capacity: unlimited
Reference text
Blockveranstaltung

Module level
AC (Aufbaucurriculum / Composition)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>exercises and oral or written exam</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3.00</td>
<td>WiSe</td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
<td>WiSe</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
56 h
inf513 - Energy Informatics Practical

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy Informatics Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf513</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in course of study | Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
 | Master's Programme Computing Science (Master) > Angewandte Informatik
 | Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule |

Contact person

- Module responsibility
 - Sebastian Lehnhoff
- Authorized examiners
 - Die im Modul Lehren den

Entry requirements

- Programming with JAVA

Skills to be acquired in this module

- Successfully completing this lecture will enable the students to mathematically model simple controllable electrical generators and consumers and to simulate them together with appropriate control algorithms within smart grid scenarios. To achieve this goal, students will start with deriving computational models from physical models and evaluate them. In order to manage the integration of control algorithms, students are taught the principles of cosimulation using the "mosaik" smart grid co-simulation framework as an example.

 Students will be able to understand and apply distributed, agent-based control schemes to decentralized energy generators and/or consumers. As a result, students are able to analyze the requirements for successful application to real power balancing regarding capacity utilization, robustness, and flexibility. In addition, students learn the foundations of planning and conducting simulation based experiments as well as the interpretation of the results. Special attention will be paid on establishing a balance between the results’ precision and robustness and the necessary effort (design of experiments) in order to gain as much insight into interdependencies with as few experiments as possible.

Professional competence

The students:

- derive and evaluate computational models from physical models
- use the “mosaik” smart grid co-simulation framework
- analyze the requirements for successful applications to real power balancing regarding capacity utilization, robustness, and flexibility
- name the foundations of planning and conducting simulation based experiments as well as the interpretation of the results
- are aware of the balance between the results’ precision and robustness and the necessary effort (design of experiments) in order to gain as much insight into interdependencies with as few experiments.

Methodological competence

The students:

- model simple controllable electrical generators and consumers
- simulate simple controllable electrical generators and consumers with appropriate control algorithms within smart grid scenarios
- apply distributed agent-based control schemes to decentralized energy generators and/or consumers
- evaluate simulation results
- search information and look into methods to implement models
- propose hypothesis and check their validity with design of experiments methods

Social competence

The students:

- apply the pair programming development technique
- discuss design decisions
- identify work packages and are responsible for it

Self-competence

The students:

- reflect on their own use of power as a limited resource
- accept and use criticism to develop their own behaviour
Module contents

In this practical course students:

- model controllable, modulating electrical energy generators and consumers,
- put their hands on mosaik (installation, description and configuration of scenarios, conduction of simulations),
- learn the principles of agent-based heuristics for optimization problems in future smart grid scenarios,
- learn about the challenges of implementing agent-based mechanisms (multi-criticality, convergency, quality) on the training,
- learn the foundations for choice and design of simulation based experiments.

Reader's advisory

Suggested reading:

Smart Grids:

Multiagentensysteme:

Co-Simulation

Versuchsplanung:

- Klein, B.: "Versuchsplanung - DoE", Oldenbourg, 2011

Links

http://mosaik.offis.de

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Reference text

Elective module in the master specialization area (energy computer science).

Associated with the modules:

- Energieinformationssysteme
- Smart Grid Management

Module level

AS (Akzentsetzung / Accentuation)

Modulart

je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

- Programmierung mit Java
- Programmierung mit Python

Examination

- Time of examination: At the end of the semester
- Type of examination: Oral exam

Final exam of module

Course type

Practical

SWS

4.00

Frequency

SuSe
| Workload attendance | 56 h |
inf533 - Probabilistic Modelling I

Module label Probabilistic Modelling I
Module code inf533
Credit points 3.0 KP
Workload 90 h

Used in course of study
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Contact person

Module responsibility
- Claus Möbus
- Die im Modul Lehrenden

Authorized examiners
- Claus Möbus
- Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
Probabilistic Bayesian models are generated with special tools (e.g. BUGS, JAGS, STAN) or domain specific programming languages (WebPPL, PyMC3, …etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as cooperative assistance systems in technical or financial systems like cars, robots, or recommenders.

Professional competence
The students:

- learn to map problem to model classes to come up with practical solutions

Methodological competence
The students:

- acquire basic skills in the design, implementation, and identification of probabilistic models with Bayesian methods
- acquire knowledge about alternative non-Bayesian machine learning methods

Social competence
The students:

- learn to present and discuss probabilistic theories, methods, and models.

Self-competence
The students:

- reflect and evaluate chances and limitations of probabilistic approaches
- learn to deliberate on machine-learning alternatives

Module contents
Theories, methods, and examples of Bayesian models with practical applications

Reader’s advisory
Recent eBooks, eTutorials

Links
http://www.uni-oldenburg.de/en/computingscience/lcs/probabilistic-programming/

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Reference text
Associated with the module:
- inf534 Probabilistic Modelling II
<table>
<thead>
<tr>
<th>Modullevel</th>
<th>AS (Akzentsetzung / Accentuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Programierkenntnisse</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Will be announced in the lecture</td>
</tr>
<tr>
<td>Course type</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf534 - Probabilistic Modelling II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Probabilistic Modelling II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf534</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction

Contact person
- Module responsibility
 - Claus Möbus
 - Die im Modul Lehrenden
- Authorized examiners
 - Claus Möbus
 - Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module
- Probabilistic models are generated with special tools (e.g. BUGS, JAGS, STAN) or domain specific programming languages (WebPPL, PyMC3, …, etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as cooperative assistance systems in technical or financial systems like cars, robots, or recommenders. In this part of the seminar we read, present, and discuss recent research papers.

Professional competence
The students:

- learn to connect problem- with model classes to come up with practical solutions

Methodological competence
The students:

- acquire advanced skills in the design, implementation, and identification of probabilistic models with Bayesian methods
- acquire knowledge about alternative machine learning methods

Social competence
The students:

- learn to present and discuss probabilistic theories, methods, and models

Self-competence
The students:

- reflect and evaluate chances and limitations of probabilistic approaches
- learn to deliberate on machine-learning alternatives

Module contents
Theories, methods, and examples of Bayesian models with practical applications

Reader's advisory
Recent publications

Links
http://www.uni-oldenburg.de/en/computingscience/lcs/probabilistic-programming/

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Reference text
Associated with the module:

- inf533 Probabilistische Modellierung I
<table>
<thead>
<tr>
<th>Module Level</th>
<th>AS (Akzentsetzung / Accentuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Learning/Teaching Type</td>
<td></td>
</tr>
<tr>
<td>Previous Knowledge</td>
<td>- Grundkenntnisse Pro grammierung</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final Exam of Module</td>
<td>individuell in Absprache mit dem Lehrenden</td>
</tr>
<tr>
<td>Course Type</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe</td>
</tr>
<tr>
<td>Workload Attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf950 - Interdisciplinary Module I

Module label Interdisciplinary Module I
Module code inf950
Credit points 6.0 KP
Workload 180 h
Used in course of study • Master's Programme Computing Science (Master) > Nicht Informatik
 • Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
Contact person Module responsibility
 • Die im Modul Lehrenden
Authorized examiners • Die im Modul Lehrenden

Entry requirements

Skills to be acquired in this module

Ziele des Moduls/Kompetenzen:
Die Absolventinnen und Absolventen kennen die Grundlagen und anwendungsrelevanten Hintergründe der ausgewählten Disziplin.

Fachkompetenzen
Die Studierenden:
• benennen die Grundlagen und Methoden des gewählten Gebietes
• wenden die Fachsprache des Anwendungsgebietes kompetent an

Methodenkompetenzen
Die Studierenden:
• charakterisieren Nutzungskontext und Anforderungen von IT im gewählten Gebiet
• wenden die disziplinären Methoden und Techniken des Anwendungsgebietes an und kontrastieren diese mit den aus der Informatik bekannten Methoden und Techniken
• untersuchen Probleme eines Anwendungsgebietes mit den disziplin-typischen Methoden

Sozialkompetenzen
Die Studierenden:
• können die Verschiedenheit von Fachkulturen einschätzen und respektieren andere Fachgebiete und deren Arbeitsweise
• bereiten sich auf Anwendungsszenarien für IT-Systeme vor

Selbstkompetenzen
Die Studierenden:
• reflektieren ihr Selbstbild und Handeln vor dem Hintergrund einer anderen Fachdisziplin

Module contents
Das Modul wird mit Fachmodulen aus anderen Disziplinen oder Modulen des Departments für Informatik instanziert, die als Nicht Informatik-Modul gekennzeichnet sind. Die Veranstaltungsformen und Prüfungsmodalitäten orientieren sich an dem jeweils gewählten Modul.

Reader's advisory

Links

Languages of instruction

Duration (semesters) 1 Semester

Module frequency

Module capacity unlimited

Modulelevel AS (Akzentsetzung / Accentuation)

Modulart je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination Time of examination Type of examination
Final exam of module M
<table>
<thead>
<tr>
<th>Course type</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Interdisciplinary Module II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Interdisciplinary Module II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf951</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Nicht Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Reader's advisory</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td></td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>BC (Basiscurriculum / Base curriculum)</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Time of examination</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>M</td>
</tr>
<tr>
<td>Course type</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>WISe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Abschlussmodul

mam - Master´s Thesis Module

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master’s Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme Embedded Systems and Microrobotics (Master) > Abschlussmodul</td>
</tr>
</tbody>
</table>

Contact person

- Michael Sonnenschein
- Lehrende der Informatik

Entry requirements

Skills to be acquired in this module

The students prove that they are able to process and solve complex computer science tasks based on gained scientific knowledge and applied research methods. The students successfully implement a task especially by using their acquired professional and methodological knowledge and their professional and social competences.

The accompanying seminar is used to discuss the master’s thesis methodically and content-related. During the seminar the exchange of research and practical experience fosters the students' ability to discuss and evaluate their thesis with other students and experts.

The master’s thesis is finished by a colloquium.

Professional competence

The students:

- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Design solutions for complex, possibly vaguely defined or unusual computer science tasks/problems and evaluate these with reference to state of the art computer science and technology
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Relate knowledge from different disciplines and apply this new knowledge in complex situations
- Develop complex computer systems, processes and datamodels
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competence

The students:

- Identify and develop one or more solutions
- Evaluate and apply tools, technology and methods sophisticatedly
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Schedule processes and resources
- Apply project management techniques
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competence

The students:

- Communicate with users and experts convincingly
- Take reasonable decisions

Self-competence

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently
- Recognise their abilities and extend them purposefully
- Reflect their self-perception and actions with regard to professional, methodological and social aspects
- Develop and reflect self-developed hypotheses to theories independently
- Work in their field independently

<table>
<thead>
<tr>
<th>Module contents</th>
<th>The content of this module is an independent topic research. The research findings will be presented and discussed in a master's thesis colloquium.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reader's advisory</td>
<td>Wird entsprechend des konkreten Themas spezifiziert.</td>
</tr>
<tr>
<td>Links</td>
<td>https://www.uni-oldenburg.de/informatik/studium-lehre/infos-zum-studium/abschlussarbeiten/</td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>Abschlussmodul (Abschlussmodul)</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Anfertigen einer Masterarbeit</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>individuell</td>
</tr>
<tr>
<td>Examination</td>
<td>Master's thesis, presentation and discussion.</td>
</tr>
<tr>
<td>Course type</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>0.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe and WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>