<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bio605</td>
<td>Molecular Genetics and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>bio655</td>
<td>Ornithology in theoretical Concepts</td>
<td>6</td>
</tr>
<tr>
<td>bio663</td>
<td>Ornithology in Practice</td>
<td>8</td>
</tr>
<tr>
<td>bio675</td>
<td>Molecular Ecology</td>
<td>11</td>
</tr>
<tr>
<td>bio695</td>
<td>Biochemical concepts in signal transduction</td>
<td>13</td>
</tr>
<tr>
<td>bio703</td>
<td>Basic Concepts in Plant Sciences</td>
<td>14</td>
</tr>
<tr>
<td>bio720</td>
<td>Marine Biodiversity</td>
<td>15</td>
</tr>
<tr>
<td>bio733</td>
<td>Evolutionary Biology Population Genetics</td>
<td>17</td>
</tr>
<tr>
<td>bio736</td>
<td>Evolutionary Transcriptomics</td>
<td>18</td>
</tr>
<tr>
<td>bio765</td>
<td>Current Methods in Plant Sciences - Ecology, Phylogeny and Molecular Biology</td>
<td>19</td>
</tr>
<tr>
<td>bio770</td>
<td>Field Methods in Organismal Biology</td>
<td>21</td>
</tr>
<tr>
<td>bio773</td>
<td>Sequence based biomonitoring</td>
<td>23</td>
</tr>
<tr>
<td>bio780</td>
<td>Biodiversity of Littoral Communities</td>
<td>25</td>
</tr>
<tr>
<td>bio845</td>
<td>Introduction to Development and Evolution</td>
<td>27</td>
</tr>
<tr>
<td>bio846</td>
<td>Lab Exercises in Development and Evolution</td>
<td>29</td>
</tr>
<tr>
<td>bio860</td>
<td>Comparative Developmental Biology</td>
<td>31</td>
</tr>
<tr>
<td>neu141</td>
<td>Visual Neuroscience - Physiology and Anatomy</td>
<td>32</td>
</tr>
<tr>
<td>neu150</td>
<td>Visual Neuroscience - Anatomy</td>
<td>34</td>
</tr>
<tr>
<td>neu210</td>
<td>Neurosensory Science and Behaviour</td>
<td>35</td>
</tr>
<tr>
<td>neu220</td>
<td>Neurocognition and Psychopharmacology</td>
<td>37</td>
</tr>
<tr>
<td>neu310</td>
<td>Psychophysics of Hearing</td>
<td>39</td>
</tr>
</tbody>
</table>
neu340 - Invertebrate Neuroscience - Neurophysiology ... 40
neu360 - Auditory Neuroscience ... 42
psy270 - Functional MRI Data Analysis ... 44
neu380 - Neuroethology and Neurogenetics: Insect Models ... 46
bio810 - Independent Research .. 47
bio820 - Research Module Fast Track .. 49
bio900 - Biology Research Module .. 49
bio870 - Communicating Plant Sciences .. 50
bio880 - Skills in Plant Systematics .. 53
bio890 - Current Topics in Biology .. 54
bio777 - Objekte in wissenschaftlichen Sammlungen: Konservierung, Management und Forschungsfragen ... 54
bio783 - Object-based Research Projects in Biological Collections ... 57
neu730 - Biosciences in the Public Eye and in our Laws .. 59
neu751 - Laboratory Animal Science .. 61
neu760 - Scientific English .. 63
neu780 - Biological Data Analysis with Python ... 65
neu790 - Communicating Neuroscience ... 66
neu800 - Introduction to Matlab .. 68
neu810 - International Meeting Contribution ... 69
neu820 - Neuroscience Journal Club .. 71
neu725 - Multivariate Statistics and Applications in R .. 72
mam - Master’s Thesis Module .. 74
Modules for Biology

Background Modules

bio605 - Molecular Genetics and Cell Biology

Module label
Molecular Genetics and Cell Biology

Modulkürzel
bio605

Credit points
12.0 KP

Workload
360 h

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen
- Neidhardt, John (Module responsibility)
- Neidhardt, John (Prüfungsberechtigt)
- Koch, Karl-Wilhelm (Prüfungsberechtigt)
- Jöschke, Christoph (Prüfungsberechtigt)

Prerequisites
- BSc (Biologie, Biochemie)

Skills to be acquired in this module
++ deepened biological expertise
++ deepened knowledge of biological working methods
+ data analysis skills
++ interdisciplinary thinking
+ critical and analytical thinking
+ independent searching and knowledge of scientific literature
+ data presentation and discussion (E) (written and spoken)
+ teamwork
+ ethics and professional behaviour
+ project and time management

Addressing students with an emphasis on molecular biology, molecular genetics, cell biology, and neurobiology

Module contents
Lecture: To improve knowledge in molecular genetics, molecular biology and cell biology in correlation with human diseases. Exercise: Learn to transfer the theoretical knowledge to experiments. Gaining methodological knowledge in molecular genetics, cell biology and therapeutic approaches. Initial training on how to perform research projects. Subjects of the lecture and seminar: Molecular bases of neurodegenerative diseases, structure and function of DNA/RNA/proteins/membranes, cytoskeleton, cell cycle, programmed cell death, cells in the social structure. Exercises: Learning current methods of molecular biology and human genetics; high throughput technologies, introduction to cell cultivation techniques.

Literaturrempfehlungen
Textbooks of Cell Biology

Links
http://www.uni-oldenburg.de/humangenetik/

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency

Module capacity
15

Reference text
associated with bio900

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge
Zellbiologische Grundkenntnisse, Genetik, Biochemie

Examination
Prüfungszeiten

Type of examination
written examination (70 %), paper(s) presentation 30 %; not graded: signed lab protocols, regular active participation is required for the module to be passed.

Form of instruction
Comment
SWS Frequency Workload of compulsory attendance

Lecture
2 WiSe 28

4 / 75
<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>1</td>
<td></td>
<td>WiSe 14</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td>5</td>
<td></td>
<td>WiSe 70</td>
<td>70</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 112 h
bio655 - Ornithology in theoretical Concepts

The aim of the module is to consolidate various aspects of ornithology. The module imparts advanced knowledge on different aspects of ornithology.

The students acquire:
- An extended knowledge of behavioural, sensory, morphological and physiological characteristics in birds and relevant fundamental concepts in conservation, ecology and evolution.
- Smorphological and physiological fundamentals and the resulting ecological and behaviour-biological consequences in birds.
- Knowledge, presentation and discussion of relevant English literature from various fields of ornithology.
- ++ broad and deepened biological expertise
- + deepened in depth knowledge of biological working methods
- + interdisciplinary thinking
- + critical and analytical thinking
- + independent searching and knowledge of scientific literature
- ++ data presentation and discussion in German and English (written and spoken)

Module contents

The module is composed of the lecture “Ecology, evolution and sensory biology in birds”, a seminar accompanying the lecture “Current Questions in Ornithology”, a seminar “Behavioural Ecology of Birds”, and a seminar “Methods in Field Ornithology”.

Lecture “Ecology, evolution and sensory biology in birds”:

This lecture covers in-depth and specific aspects of phylogeny, speciation and hybridisation, bird migration, orientation, behavioural ecology, population biology, life history and sensory systems of birds. Seminar “Current Questions of Ornithology”:

In this seminar, original English publications are presented and discussed which deal with current research.
results from various fields covered in the lectures. Every student reads a paper on one scientific article, presents the study and discusses the results of that article with the other participants.

Seminar "Behavioural Ecology of Birds" (option 1):

In the seminar, current literature relating to the life history of birds will be reported. During the term, each participant is presenting an original paper in a short talk and the group of students will be guided to critically discuss the paper.

Seminar "Methods in Field Ornithology" (option 2):

The core methods of field ornithology, such as stable isotopes, bird census, ringing, radar, radio tracking, etc., will be introduced with the help of English scientific papers by the students. In the presentations the corresponding methods will be explained in detail with an emphasis on the pros and cons of the method. The aim of this seminar is to learn how to deal with scientific methods in a critical way.

Literaturempfehlungen

Bairlein F (2022) Das große Buch vom Vogelzug: Eine umfassende Gesamtdarstellung. AULA-Verlag

Links

Participating Institution: Institute of Avian Research für Vogelforschung

bio663 - Ornithology in Practice

Module label
Ornithology in Practice

Modulkürzel
bio663

Credit points
12.0 KP

Workload
360 h
(2 weeks, 40h/week. Types of programme may differ slightly between the four different courses.)

Verwendbarkeit des Moduls
• Master's Programme Biology (Master) > Background Modules

Zuständige Personen
Liedvogel, Miriam (Module responsibility)
Bouwhuis, Sandra (Module counselling)
Langemann, Ulrike (Module counselling)
Vedder, Oscar Herman (Module counselling)
Schmaljohann, Heiko (Module counselling)
Liedvogel, Miriam (Prüfungsberechtigt)
Bouwhuis, Sandra (Prüfungsberechtigt)
Langemann, Ulrike (Prüfungsberechtigt)
Vedder, Oscar Herman (Prüfungsberechtigt)
Schmaljohann, Heiko (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
++ broad and in depths biological expertise
++ in depths knowledge of biological working methods
++ data analysis skills
+ interdisciplinary thinking
+ critical and analytical thinking
++ independent searching and knowledge of scientific literature
++ data presentation and discussion in German and English (written and spoken)
+ teamwork
+ project and time management
+ statistics and scientific programming

The aim of the module is to consolidate various aspects of ornithology as well as to impart up to date methods applied in ornithological research.

Module contents
The module comprises four required elective courses (6 CP each), two of which have to be chosen.

Required elective course 1: Laboratory course and seminar “Ecology of Colonial Seabirds” (6 CP) The Institute of Avian Research safeguards a long-term individual-based study on common terns: colonially breeding, migratory, piscivorous seabirds. Students spend a week at the colony (located at the Banter See in Wilhelmshaven) to ask a scientific question (e.g. about foraging behaviour, coloniality or courtship behaviour) and collect data to answer it, then spend a week analysing the data statistically, writing a short report in Biology Letters format and presenting their results to their peers. Students receive one mark for the report and one for the presentation and the final mark for the course will be the average of these two marks.

Required elective course 2: Laboratory course and seminar “Communication in Birds” (6 CP). Original
recordings from bird songs will be used to generate new data sets for the practical. From these recordings we will prepare spectrograms and analyze the waveforms and frequency spectra. Techniques and statistical method that allow to classify song types from individuals or from populations will be introduced and applied. For example, cluster analysis and discriminant analysis are statistical methods to assess the dissimilarity between "objects" or song type characteristics. The theoretical background for the practical is provided by the seminar using a standard text book on bird song Catchpole & Slater 2008).

Required elective course 3: Laboratory course and seminar “Japanese Quail” (6 CP). Observations and investigations of behaviour in relation to reproductive activity of male and female Japanese quail, at the Institute of Avian Research. Students will learn about theory regarding pace of life and exploration behaviour and develop predictions for inter-individual differences in exploration behaviour in relation to sex and reproductive activity. These predictions will be tested with standardized behavioural observations and measurements of food intake in the quail. The data will be analysed and discussed in the broader context of life-history theory.

Required elective course 4: Laboratory course and seminar “Scientific research in field ornithology, incl. identification of birds” (6 CP) This course has three teaching objectives. Firstly, to impart knowledge of the local bird community. This is conveyed through practical courses, work on bird specimens, and lectures. Secondly, learning and getting to know some standard methods of field ornithology, e.g. breeding survey, waterbird counts, radio telemetry, mist netting. Both teaching objectives form the basis for the third teaching objective. In this, the students independently conduct a scientific ornithological study. The data are analysed in the course under supervision. The results are summarised in a two-page scientific publication. At the end of the course, a kind of scientific conference takes place, in which all scientific projects are presented and discussed. The final grade is made up of the grades for the presentations and the scientific publication.

Literatureempfehlungen

Required elective course 2:
Catchpole CK & Slater PJB (2008), "Bird Song, Biological themes and variations", Cambridge University Press, 2nd Edition

Required elective course 3:

Required elective course 4:

Links

Language of instruction English
Duration (semesters) 1 Semester
Module frequency
Module capacity 12 (number of students varies between the four required elective courses. for REC1 it is 8, for REC2 it is 9, for REC3 it is 4, for REC4 it is 12)
Modulelevel / module level MM (Mastermodul / Master module)
<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
<th>Wahlpflicht / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Übung, Seminar</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>within the two weeks per required elective course</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar und Übung</td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzeit</td>
<td>0 h</td>
</tr>
</tbody>
</table>
bio675 - Molecular Ecology

Module label: Molecular Ecology
Modulkürzel: bio675
Credit points: 12.0 KP
Workload: 360 h

Verwendbarkeit des Moduls:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Landscape Ecology (Master) > Basismodule

Zuständige Personen:
- Nolte, Arne (Module responsibility)
- Gerlach, Gabriele (Module counselling)
- Nolte, Arne (Prüfungsberechtigt)
- Gerlach, Gabriele (Prüfungsberechtigt)
- Dennenmoser, Stefan (Prüfungsberechtigt)

Prerequisites:
B.Sc. (Biologie, Umweltwissenschaften) M.Sc. (Biologie, Marine Umweltwissenschaften, Landschaftsökologie)

Skills to be acquired in this module:
The field of molecular ecology strives to identify relationships between species genotypes, phenotypes and ecological factors. It addresses questions about how organisms adapt and explains patterns of distribution and biodiversity. During the course, participants will get to know the biological background to design an experiment in the field of molecular ecology. We will discuss the state of the art according to literature. Participants will perform sampling and conduct steps of the analysis. The course will cover field methods (sampling) and lab methods (behavior experiments, genetic analyses, phenotypic analyses) as well as computer based analyses.
++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
+ interdisciplinary thinking
+ critical and analytical thinking
+ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
++ data presentation and discussion (E) (written and spoken)
+ statistics & scientific programming

Module contents:
Lecture: AN/GG - Molecular ecology background of specific study systems. The lectures will introduce a study system that will be analyzed during the course (study systems may vary from year to year). It is the goal of the lecture to provide students with background information to develop an experimental design of a field study during the practical. Exercise: AN/GG - Mixed course with laboratory and field exercises. Samples will be collected in the field. One goal of the course is to apply modern analyses to understand how organisms are distributed. Another aspect is the application of molecular markers to analyze behavioral experiments.

Literaturempfehlungen:
will be announced during the course

Links:

Languages of instruction:
German, English

Duration (semesters):
1 Semester

Module frequency:
Module capacity: 15
Reference text:
associated with bio890 Current Topics of Biology (Seminar)

Modullevel / module level:
MM (Mastermodul / Master module)

Modulart / typ of module:
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method:

Vorkenntnisse / Previous knowledge:

Examination:
Prüfungszeiten:
Type of examination:
Final exam of module:
during the module
Präsentationen (50%), Portfolio (50%). Regular participation is a prerequisite to pass in the module.

Form of instruction:
Comment:
SWS
Frequency
Workload of compulsory attendance
Lecture: 2
SoSe: 28
Exercises: 6
SoSe: 84
<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>112 h</td>
</tr>
</tbody>
</table>
bio695 - Biochemical concepts in signal transduction

Module label: Biochemical concepts in signal transduction

Modulkürzel: bio695

Credit points: 12.0 KP

Workload: 360 h

Verwendbarkeit des Moduls:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen:
- Koch, Karl-Wilhelm (Module responsibility)
- Koch, Karl-Wilhelm (Prüfungsberechtigt)
- Scholten, Alexander (Prüfungsberechtigt)
- Scholten, Alexander (Module counselling)

Prerequisites:
- keine

Skills to be acquired in this module:
- ++ deepened knowledge of biological working methods
- ++ methods: protein expression and purification, functional assays, enzyme kinetics, spectroscopic techniques
- ++ data analysis skills
- ++ interdisciplinary thinking
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- ++ ability to perform independent biological research
- ++ data presentation and discussion in German and English (written and spoken)
- ++ teamwork
- ++ project and time management

Module contents:
- Lecture: Molecular fundamentals of cellular signal processes
- Seminar: Signal transduction
- Exercises: Experiments on cellular signal transduction and enzymology

Mechanisms of biochemical signal transduction are imparted theoretically and experimentally

Literaturempfehlungen:
- Textbooks of cell biology and biochemistry.
- Current literature on topics of signal transduction (as announced in the preparatory meeting).

Links:
- Language of instruction: English
- Duration (semesters): 1 Semester

Module frequency:
- 1 Semester

Module capacity:
- 20

Modullevel / module level:
- MM (Mastermodul / Master module)

Modulart / typ of module:
- Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method:

Vorkenntnisse / Previous knowledge:

Examination:
- Prüfungszeiten: 90 minutes written exam
- Type of examination: written examination (50%) protocols (50%)

Form of instruction:
- Lecture: 1 SWS, Frequency: WiSe, Workload of compulsory attendance: 14 h
- Seminar: 1 SWS, Frequency: WiSe, Workload of compulsory attendance: 14 h
- Exercises: 6 SWS, Frequency: WiSe, Workload of compulsory attendance: 84 h

Präsenzzeit Modul insgesamt: 112 h
bio703 - Basic Concepts in Plant Sciences

Module label: Basic Concepts in Plant Sciences
Modulkürzel: bio703
Credit points: 12.0 KP
Workload: 360 h

Verwendbarkeit des Moduls:
- Master's Programme Biology (Master) > Background Modules
 - Master's Programme Biology (Master) > Background Modules

Zuständige Personen:
- Zotz, Gerhard (Module responsibility)
- Albach, Dirk Carl (Module counselling)
- von Hagen, Klaus Bernhard (Module counselling)
- Zotz, Gerhard (Prüfungsberechtigt)
- Albach, Dirk Carl (Prüfungsberechtigt)
- von Hagen, Klaus Bernhard (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module:
- Communicating deeper knowledge in ecology, phylogeny, evolution and genetics of plants
- Communicating scale- and method-overarching thinking
- Communicating deeper theoretic concepts of ecology, evolution and genetics of plants.
- ++ deepened biological expertise
- + deepened knowledge of biological working methods
- + data analysis skills
- + interdisciplinary thinking
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- + ability to perform independent biological research
- ++ data presentation and discussion in English (written and spoken)
- + teamwork
- ++ ethics and professional behaviour

Module contents:
- V: Biodiversity of plants (2 SWS)
- V: Resource acquisition and use by plants (1 SWS)
- V: Gene expression in plants (1 SWS)
- S: Phylogeny of plants (2 SWS)
- S: Interactions of plants with environmental parameters (2SWS)

Literaturempfehlungen:

Links:
- Languages of instruction: German, English
- Duration (semesters): 1 Semester
- Module capacity: 12

Module frequency:
- Reference text: associated with bio765 (Current Methods in Plant Science) (recommended)
- Modullevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method:
- Vorkenntnisse / Previous knowledge: Ökologie, Flora, Genetik
- Examination: Prüfungszeiten
- Type of examination: 1 Portfolio

Final exam of module:
Form of instruction	Comment	SWS	Frequency	Workload of compulsory attendance
Lecture | 4 | WiSe | 56
Seminar | 4 | WiSe | 56

Präsenzzeit Modul insgesamt: 112 h
bio720 - Marine Biodiversity

Module label: Marine Biodiversity
Modulkürzel: bio720
Credit points: 15.0 KP
Workload: 450 h

Verwendbarkeit des Moduls:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules

Zuständige Personen:
- Martinez Arbizu, Pedro Miguel (Module responsibility)
- Martinez Arbizu, Pedro Miguel (Prüfungsberechtigt)
- Wehrmann, Achim (Prüfungsberechtigt)
- Rossel, Sven (Prüfungsberechtigt)
- Gutt, Julian (Prüfungsberechtigt)
- Kröncke, Ingrid (Prüfungsberechtigt)

Prerequisites:
- BSc (Biology)

Skills to be acquired in this module:
++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
++ interdisciplinary thinking
++ critical and analytical thinking
++ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
++ data presentation and discussion (written and spoken) (E)
++ teamwork + ethics and professional behaviour
++ project and time management
++ statistics & scientific programming

Knowledge of fundamentals, topical subjects and methods in Marine Biology and Marine Geology. Studies and critical assessment of the scientific literature.

Module contents:
L: (AW) General Marine Geology E: Biogenic sedimentation, Interaction benthos-sediment; (SS) Plankton of the oceans; (MH) unicellular plankton; (IK) benthos of the North-Sea; (PM) biodiversity in the deep sea and on sea-mountains; (UG) conceptions and hypotheses of marine biodiversity, biodiversity of marine vertebrates; (GG) animal migrations and dispersal behaviour. Methods and scientific work on research vessels. A lecture comprises the above-mentioned subjects and imparts marine biological theories, research results and methods. In the seminar, research is presented and discussed. In the laboratory course/exercises, subjects are treated in coordination with the contents of the lecture. With the aid of a computer, data are analysed and interpreted statistically.

Literaturempfehlungen:
as announced in the lecture

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited

Modulelevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge:

Examination:
Prüfungszeiten:
Written examination (60 %), portfolio (20 %), short presentation (20%)
Regular active participation is required for the module to be passed.

Form of instruction:

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>9</td>
<td>WiSe</td>
<td>126</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Seminar</td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
<td>182 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>182 h</td>
</tr>
</tbody>
</table>
bio733 - Evolutionary Biology Population Genetics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Evolutionary Biology Population Genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio733</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Biology (Master) > Background Modules</td>
</tr>
</tbody>
</table>

Zuständige Personen
- Gerlach, Gabriele (Module responsibility)
- Albach, Dirk Carl (Module counselling)
- Khan, Gulzar (Module counselling)
- Gerlach, Gabriele (Prüfungsberechtigt)
- Albach, Dirk Carl (Prüfungsberechtigt)
- Khan, Gulzar (Prüfungsberechtigt)

Further responsible persons
Levent Khan

Prerequisites
None

Skills to be acquired in this module
- + deepened biological expertise
- ++ deepened knowledge of biological working methods
- ++ data analysis skills
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- ++ data presentation and discussion (E) (written and spoken)
- + teamwork
- ++ statistics & scientific programming

Module contents
Lecture conveys knowledge about the fields of population genetics, evolution and speciation. Important laboratory methods regarding DNA sequencing will be learned as well as basics and background information on the analysis of dispersal, distribution, genetic diversity of plant and animal species. Exercise: Data sets and methods will be analysed to determine distribution and genetic exchange between populations.

Literaturempfehlungen
- Current papers in Evolutionary Biology
- Futuyama D. Evolutionary Biology, Elsevier
- Hartl & Clark Principles of Population Genetics, Sinauer

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
12

Module capacity
12

Reference text
Associated with bio736 (Evolutionary Transcriptomics) (recommended)

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge
Grundkenntnisse Evolutionsbiologie

Examination
<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>portfolio (60%) presentation (40%)</td>
</tr>
</tbody>
</table>

Final exam of module
<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
bio736 - Evolutionary Transcriptomics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Evolutionary Transcriptomics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio736</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>- Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>- Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Nolte, Arne (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Dennenmoser, Stefan (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Nolte, Arne (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Dennenmoser, Stefan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>none</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>+ deepened biological expertise</td>
</tr>
<tr>
<td></td>
<td>++ deepened knowledge of biological working methods</td>
</tr>
<tr>
<td></td>
<td>++ data analysis skills;</td>
</tr>
<tr>
<td></td>
<td>++ critical and analytical thinking</td>
</tr>
<tr>
<td></td>
<td>++ independent searching and knowledge of scientific literature</td>
</tr>
<tr>
<td></td>
<td>++ data presentation and discussion in English (written and spoken)</td>
</tr>
<tr>
<td></td>
<td>++ statistics & scientific programming</td>
</tr>
<tr>
<td>Module contents</td>
<td>Lecture: Gene expression represents the first step of the translation of genomic information into a phenotype. This phenotype is of broad interest in all disciplines of biology. Gene expression data can reveal how genetic changes at single genes manifest phenotypically and how gene expression is regulated. The same data can also explain differences in life history and adaptation to different environments. Different perspectives can be understood by studying mechanisms of gene regulation as well as broad scale transcriptomics analyses.</td>
</tr>
<tr>
<td></td>
<td>Exercise: We will generate and analyze gene expression data during the course including wet lab and computational methods. Practicals include the analysis of single-gene expression data as well as RNAseq data representing complete transcriptomes.</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>12</td>
</tr>
<tr>
<td>Reference text</td>
<td>associated with bio733: Evolutionary Biology Population Genetics (recommended)</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Grundkenntnisse Evolutionsbiologie</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>portfolio (60%) presentation (40%)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>1</td>
</tr>
<tr>
<td>Exercises</td>
<td>3</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
bio765 - Current Methods in Plant Sciences - Ecology, Phylogeny and Molecular Biology

Module label
Current Methods in Plant Sciences - Ecology, Phylogeny and Molecular Biology

Modulkürzel
bio765

Credit points
12.0 KP

Workload
360 h

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules

Zuständige Personen
Albach, Dirk Carl (Module responsibility)
Zotz, Gerhard (Module counselling)
Will, Maria (Module counselling)
Khan, Gulzar (Module counselling)
von Hagen, Klaus Bernhard (Module counselling)
Will, Maria (Prüfungsberechtigt)
Albach, Dirk Carl (Prüfungsberechtigt)
Zotz, Gerhard (Prüfungsberechtigt)
Khan, Gulzar (Prüfungsberechtigt)
von Hagen, Klaus Bernhard (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
- Acquaintance and practicing ecological, phylogenetic and molecular methods
- Communication of scale- and method-overarching thinking and project planning
- Knowledge of current methods and questions in plant science
- Capacity for teamwork, project- and time management
- ++ deepened biological expertise
- ++ deepened knowledge of biological working methods
- ++ data analysis skills
- ++ interdisciplinary thinking
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- ++ ability to perform independent biological research
- ++ data presentation and discussion (written and spoken)
- ++ teamwork
- ++ statistics & scientific programming

Module contents
Ü: Current Methods in Plant Science (8 SWS)

Literaturempfehlungen

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency

Module capacity
12

Reference text
associated with bio703 (Basic Concepts in Plant Sciences) (recommended)

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge
Ökologie, Flora, Genetik

Examination
Prüfungszeiten

Type of examination
Portfolio

Final exam of module
Exercises

Form of instruction

SWS
8

Frequency
WiSe
| Workload Präsenzzeit | 112 h |
bio770 - Field Methods in Organismal Biology

Module label: Field Methods in Organismal Biology

Modulkürzel: bio770

Credit points: 15.0 KP

Workload: 450 h

Verwendbarkeit des Moduls:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Landscape Ecology (Master) > Basismodule

Zuständige Personen:
- Zotz, Gerhard (Module responsibility)
- Gerlach, Gabriele (Module counselling)
- Albach, Dirk Carl (Module counselling)
- von Hagen, Klaus Bernhard (Module counselling)
- Mouritsen, Henrik (Module counselling)
- Nolte, Arne (Module counselling)
- Zotz, Gerhard (Prüfungsberechtigt)
- Gerlach, Gabriele (Prüfungsberechtigt)
- Albach, Dirk Carl (Prüfungsberechtigt)
- Will, Maria (Prüfungsberechtigt)
- von Hagen, Klaus Bernhard (Prüfungsberechtigt)
- Mouritsen, Henrik (Prüfungsberechtigt)
- Nolte, Arne (Prüfungsberechtigt)
- Khan, Gulzar (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module

++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
++ interdisciplinary thinking
++ critical and analytical thinking
++ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
++ data presentation and discussion (E) (written and spoken)
++ project and time management
++ statistics & scientific programming

The molecule aims at enabling students to apply theoretical knowledge to practical, hypothesis-based field studies within the scope of a seminar. The data derived from the individual projects performed are then to be documented and discussed in the form of a written laboratory course report oriented by a scientific publication and to be written in English. Several teachers cooperate to enable interdisciplinary approaches (e.g. botanical-zoological approaches).

Module contents:

S: Biogeographic and ecological classification and characterization of a biome (e.g. Mediterranean region, moist tropics, boreal zone), independent identification and treatment of scientific questions, presentation of scientific results in a "mini symposium" subsequent to the field studies. E: Planning and performing a field study project, data analysis, written report in the form of a scientific publication

Literaturempfehlungen:
Varies with topic and field locality

Links:
www.uni-oldenburg.de/fun_eco/

Languages of instruction:
German, English

Duration (semesters):
1 Semester

Module frequency:
jährlich

Module capacity:
21

Modullevel / module level:
MM (Mastermodul / Master module)

Modulart / typ of module:
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning: 21 / 75
method

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>2 Presentations (30 %) Laboratory course report on project work (70 %)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td></td>
<td>10</td>
<td>SoSe</td>
<td>140</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar (Pflichtveranstaltung für Erstsemester OHNE bisherige Belehrung)</td>
<td></td>
<td></td>
<td>WiSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

168 h
bio773 - Sequence based biomonitoring

Module label
Sequence based biomonitoring

Modulkürzel
bio773

Credit points
12.0 KP

Workload
360 h

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules

Zuständige Personen

- Nolte, Arne (Module responsibility)
- Dennenmoser, Stefan (Module counselling)
- Nolte, Arne (Prüfungsberechtigt)
- Dennenmoser, Stefan (Prüfungsberechtigt)
- Martinez Arbizu, Pedro Miguel (Prüfungsberechtigt)
- Albach, Dirk Carl (Prüfungsberechtigt)
- Khan, Gulzar (Prüfungsberechtigt)

Prerequisites

- none

Skills to be acquired in this module

- + deepened biological expertise
- ++ deepened knowledge of biological working methods
- ++ data analysis skills
- ++ critical and analytical thinking
- + independent searching and knowledge of scientific literature
- ++ data presentation and discussion in English (written and spoken)
- ++ statistics and scientific computing

Module contents

Content of the module:

Lecture: The identification of organisms based on DNA sequences is well established and databased dedicated for this purpose are growing through 'barcoding of life' initiatives. Such information can be used to assign sequences extracted from environmental samples to individual species. This can be used to obtain species inventories and to study communities. While these methods are already used in fundamental research, they are only slowly adopted by fields such as conservation and ecosystem monitoring. The lecture covers concepts, methods, promises and problems of sequence based biomonitoring.

Seminar: participants present topics relevant to the module.

Exercise: We will generate and analyse sequence data from environmental samples to generate species inventories for terrestrial and aquatic ecosystems. For this purpose we will extract eDNA from samples and apply next generation sequencing. The read data will be jointly analysed on the university hpc cluster. The participants will study methods and concepts associated with the analyses and present them in short presentations. The key aspect in the practical course is to assign sequences to species and to discuss the applicability of the methods in fundamental research and in applied, management oriented research.

Literaturempfehlungen

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
annual

Module capacity
16

Reference text

Associated with the module:

- recommended:
 - Evolutionary Biology Gerlach/Albach.
 - Molecular Ecology: Nolte/Gerlach

Modullevel / module level

MM (Mastermodul / Master module)
<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
<th>Wahlpflicht / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
</tbody>
</table>
| Vorkenntnisse / Previous knowledge | - Evolutionsbiologie
- Lesen von englischer Fachliteratur und die Präsentation von Seminarthemen auf Englisch.
- Grundkenntnisse zum Arbeiten in einem Genlab und mit dem Computer.
- Kartierung von Arten im Freiland |
| Examination | Prüfungszeiten | Type of examination |
| Final exam of module | | 2 parts: Präsentation (50%) und Portfolio (50%) |

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>WiSe 14</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>WiSe 14</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>6</td>
<td>WiSe 84</td>
<td>84</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>112 h</td>
</tr>
</tbody>
</table>
bio780 - Biodiversity of Littoral Communities

Module label
Biodiversity of Littoral Communities

Modulkürzel
bio780

Credit points
15.0 KP

Workload
450 h

Verwendbarkeit des Moduls
- Master’s Programme Biology (Master) > Background Modules
- Master’s Programme Biology (Master) > Background Modules

Zuständige Personen
Martinez Arbizu, Pedro Miguel (Module responsibility)

Martinez Arbizu, Pedro Miguel (Prüfungsberechtigt)

Prerequisites
Safe apnoediving with aptitude test and medical fitness certificate

Skills to be acquired in this module
- Deepened knowledge of biological working methods
- Ability to perform independent biological research
- Teamwork
- Ethics and professional behaviour
- Project and time management

By actively participating in this module students acquire qualifications in the following fields: Biological oceanography, marine biology and marine ecology: - Geological formation history of the Mediterranean Sea and Atlantic Ocean, respectively, or the Red Sea and adjacent seas - Oceanography and hydrology - Development of the faunal and floral composition of the Atlantic Ocean, the Mediterranean Sea and the Mediterranean region or the Red Sea (biogeography) - Commercial utilization of the seas and its impacts - Biotopes and biotic communities - Evolution, systematics, morphology, modes of life, and ecology of selected animal groups - Applying theoretical knowledge to real-world organisms/systems - Improved and specialized knowledge of species - Adaptation of life cycles - Interaction between organisms and environment - Dynamics of reef-building and reef-degrading processes - Threat to coral reefs/protection of marine environments

Methods: - Formulation and definition of scientific approaches and selection of methods - Observation and investigation of organisms and their habitats (snorkelling/diving) - Documentation of small research projects in groups in the style of a scientific publication - Editorial work to prepare a module report - Popular presentation of results to be published by the media and to be presented at the University Further skills: - Social engagement in groups/teamwork in projects - Independent scientific work in groups - Improvement of scientific discussion culture - Consciousness of the threat to coral reefs - Practising English - Dealing with the culture of the visited region Culture: - History, culture, politics, and religion Additionally: - Physiological aspects of apnoediving - Measures in case of accidents (also caused by "poisonous" organisms)

Module contents
Biodiversity of littoral biotic communities – topographical field research

Literatureempfehlungen
GRÜTER, W., 2001: Leben im Meer - Vielfalt und Zusammenhänge. Dr. Friedrich Pfeil Verlag, München. This book will arouse your curiosity about the submarine world. A reading book!

HOFRICHTER, R., 2001: Das Mittelmeer - Fauna, Flora, Ökologie. Spektrum Akademischer Verlag, Heidelberg - Berlin: Band I, II, III. The textbook for the Mediterranean Sea! The general part provides valuable information on symbioses or feeding types, for example.

Links
Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Module level / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge
Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>during the lectures</td>
<td>2 short presentations (30 %), 1 internship report (70 %) (project report in the style of a scientific publication) PLEASE NOTE: Additional conditions regarding attendance and ungraded activities as determined by the persons responsible for the module will apply.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td></td>
<td>9</td>
<td>SoSe</td>
<td>126</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Seminar (Pflichtveranstaltung für Erstsemester OHNE bisherige Belehrung)</td>
<td></td>
<td></td>
<td>WISe</td>
<td>0</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 168 h
bio845 - Introduction to Development and Evolution

Module label
Introduction to Development and Evolution

Modulkürzel
bio845

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen
- Sienknecht, Ulrike (Module responsibility)
- Sienknecht, Ulrike (Module counselling)
- Sienknecht, Ulrike (Prüfungsberechtigt)
- Claußen, Maike (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
Upon successful completion of this course, students
- know the fundamental problems organisms share in development
- know the common basic steps of ontogenesis after comparing the life cycles of different species (both vertebrates and invertebrates)
- know the fundamentals of the genetic control of cell-fate specification, morphogenesis, and organogenesis
- know the principles of gene regulatory networks in development and are able to explain examples
- are able to explain and discuss mechanisms of development across taxonomic groups and questions about the evolution of developmental mechanisms
- have in-depth knowledge of the development of animal nervous systems, including cellular and net-work properties
 - skills:
 ++ deepened biological expertise
 + deepened knowledge of biological working methods
 ++ interdisciplinary thinking
 ++ critical and analytical thinking
 + independent searching and knowledge of scientific literature
 + ability to perform independent biological research
 + teamwork

Module contents
Lectures on the fundamentals and concepts of developmental biology, including evolutionary aspects. Parallel seminars matching the topics of the lectures and emphasizing discussion. Lecture topics:
- Introduction to Developmental Biology
- Cell-Cell Communication
- Differential Gene Expression (I and II)
- Early Development of Vertebrates, Gastrulation
- Neurulation
- Brain Development
- Axonal Growth, Target Selection, Synaptogenesis and Refinement
- Neural Crest
- Mesoderm Development
- Morphogenesis
- Developmental Mechanisms of Evolutionary Change
- Model Organisms in Developmental Biology
- Transgenic Mice
- Medical Implications of Developmental Biology

Literature:

textbook: Gilbert S.F.: Developmental Biology, Macmillan Publishers Ltd, 11th edition 2016 (current edition); and current literature on course topics

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency

| Module capacity | 20 (selection criteria: sequence of registration) |

Reference text
associated with bio846 (neu120) (Lab Exercises in Development and Evolution)

Modulart / typ of module
Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge
orGANISMIC bioLOGY, DEVELOPMENTAL BIOLOGY, EVOLUTIONARY BIOLOGY, NEUROBIOLOGY, genetics, molecular biology

Examination
Prüfungszeiten

<table>
<thead>
<tr>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral exam of 30 minutes (or written exam)</td>
</tr>
</tbody>
</table>

Final exam of module
same winter term

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>45</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>45</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
90 h
bio846 - Lab Exercises in Development and Evolution

<table>
<thead>
<tr>
<th>Module label</th>
<th>Lab Exercises in Development and Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio846</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen
- Sienknecht, Ulrike (Module responsibility)
- Sienknecht, Ulrike (Module counselling)
- Sienknecht, Ulrike (Prüfungsberechtigt)
- Claußen, Maike (Prüfungsberechtigt)
- Ebbers, Lena (Prüfungsberechtigt)

Prerequisites
mandatory prerequisite is the module bio845 (neu110) (Introduction to Development and Evolution)

Skills to be acquired in this module

Upon successful completion of this course, students have skills in methods of developmental biology:
- are capable of performing live embryo husbandry
- are able to carry out in-ovo stainings
- are familiar with the use of embryonic stage discrimination standards for model organisms
- document the observed embryonic stages by drawings with anatomical labelling
- are familiar with tissue preparation (including cryosectioning), the use of different molecular markers, and immunohistological staining methods
- microscopy, data analysis, and photographic data documentation
- know the standards of proper documentation of research data and the universal format of a lab notebook
- know how to carry out formal laboratory reports (and the structure of a scientific paper)
- have basic knowledge in the field of auditory system development
- have basic knowledge of the organisation of the auditory system across vertebrate groups
- have basic knowledge of the development of the middle and inner ear, as well as selected auditory brain centres
- are able to summarize current hypotheses about the evolution of the auditory system in vertebrates skills:
 ++ deepened biological expertise
 ++ deepened knowledge of biological working methods
 ++ data analysis skills
 ++ critical and analytical thinking
 + independent searching and knowledge of scientific literature
 ++ ability to perform independent biological research
 + data presentation and discussion (written and spoken)
 + teamwork
 + ethics and professional behaviour
 + project and time management

Module contents
Lab exercises in developmental biology of auditory research model organisms, such as chicken and mouse
embryos. Practical introduction to methods, such as in-ovo live observation; developmental stage discrimination and description, tissue preparation for histology, sectioning, staining, and microscopy, including data analyses. Seminars in the field of auditory system development and methods based on current literature.

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Module frequency

| Module capacity | 6 (selection criteria: advance of studies in MA program) |

Reference text

Associated with bio845 (neu110) (Introduction to Development and Evolution)

Modullevel / module level

MM (Mastermodul / Master module)

Modulart / typ of module

Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge

Organismic biology, experience with lab work

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>same winter term</td>
<td>1 report</td>
</tr>
</tbody>
</table>

Form of instruction

Exercises

SWS

6

Frequency

WiSe

Workload Präsenzzzeit

84 h
bio860 - Comparative Developmental Biology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Comparative Developmental Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio860</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Background Modules</td>
</tr>
</tbody>
</table>

Zuständige Personen
- Sienknecht, Ulrike (Module responsibility)
- Sienknecht, Ulrike (Prüfungsberechtigt)
- N., N. (Module counselling)

Prerequisites
- Skills to be acquired in this module
 - ++ deepened biological knowledge
 - ++ deepened knowledge of techniques in biology
 - ++ knowledge in data analysis and presentation
 - + cross-disciplinary knowledge and thinking
 - ++ critical and analytical thinking
 - + independent searching and knowledge of scientific literature
 - ++ ability to perform independent biological research
 - ++ data presentation and discussion (E) (written and spoken)
 - + team work
 - + ethics and professional behaviour
 - ++ project and time management

Module contents
- Lectures and Lab exercises in topics of evolutionary developmental biology, i.e. comparative developmental biology, such as the development of sensory systems in different species.

Literatureempfehlungen

Links
- Language of instruction: English
- Duration (semesters): 1 Semester

Module frequency
- Module capacity: 6 (Reihenfolge der Anmeldungen)
- Reference text: associated with bio845 Introduction to Development and Evolution
- Modullevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
- Vorkenntnisse / Previous knowledge: organismic biology, experience with lab work

Examination
- Form of instruction: Lecture, Exercises
- SWS: 1, 3
- Frequency: SoSe
- Workload of compulsory attendance: 14, 42

Final exam of module
- Type of examination: 1 portfolio
- Prüfungszeiten: same summer term
- Präsenzzeit Modul insgesamt: 56 h
neu141 - Visual Neuroscience - Physiology and Anatomy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Visual Neuroscience - Physiology and Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu141</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
</tbody>
</table>

Workload
- 360 h
- 3 SWS Lecture (VO)
- Total workload 90 h: 30h background literature reading and preparation for sh
- 1 SWS Seminar (SE)
- Total workload 30h: 10h contact / 20h literature reading and preparation of result presentation
- 8 SWS Supervised exercise (UE)
- Total workload 240h: 200h contact / 40h results analysis, writing of short reports for portfolio

Verwendbarkeit des Moduls
- Master’s Programme Biology (Master) > Background Modules
- Master’s Programme Biology (Master) > Background Modules
- Master’s Programme Molecular Biomedicine (Master) > Background Modules
- Master’s Programme Neuroscience (Master) > Background Modules

Zuständige Personen
- Greschner, Martin (Module responsibility)
- Greschner, Martin (Prüfungsberechtigung)
- Dedek, Karin (Prüfungsberechtigung)
- Janssen-Bienhold, Ulrike (Prüfungsberechtigung)
- Puller, Christian (Prüfungsberechtigung)

Prerequisites
- Basic knowledge of neurobiology

Skills to be acquired in this module
- ++ Neurosci. knowlg.
- ++ Expt. Methods
- + Independent research
- ++ Scient. Literature
- + Social skills
- + Maths/Stats/Progr.
- ++ Data present./disc.
- + Scientific English
- + Ethics

Upon successful completion of this course, students
- have basic knowledge of electrophysiological techniques used in neuroscience research
- have acquired first practical skills in some electrophysiological techniques
- have acquired basic skills in data analysis
- have knowledge on retinal physiology and anatomy of the visual system
- have basic knowledge of brain structures and their function
- have profound knowledge of the architecture and circuits of the vertebrate retina
- have acquired basic skills in histological techniques (tissue fixation, embedding, sectioning, staining procedures, immunohistochemistry)
- have acquired fundamental skills in microscopy (differential interference contrast microscopy, phase-contrast microscopy, confocal microscopy)

Module contents
The background module Neurophysiology consists of two weeks of theoretical introduction and two weeks of hands-on lab exercises in patch or extracellular recordings and two weeks of hands-on lab exercises in anatomy.

The seminars cover the following topics:
- Visual system
- Introduction to electrophysiological methods
- Introduction into methods used in neuranatomy and neurochemistry
- Introduction into microscopy and image analysis
- Presentation and discussion of results relating to the literature

Literaturempfehlungen
Course scripts and mandatory scientific literature discussed in the seminar will be available in Stud.IP.
Background and seminar literature will be available in Stud.IP.

Links

Language of instruction
- English
<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>annually, summer term, first half (full time)</td>
</tr>
<tr>
<td>Module capacity</td>
<td>12 - with Visual Neuroscience: Anatomy (Shared course components with (cannot be credited twice): neu151 BM Visual Neuroscience: Anatomy)</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Basic knowledge in neurobiology</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>during the course (summer semester, first half) In addition, mandatory but ungraded: seminar presentation</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td>84 h</td>
</tr>
</tbody>
</table>
neu150 - Visual Neuroscience - Anatomy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Visual Neuroscience - Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu150</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Molecular Biomedicine (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Neuroscience (Master) > Background Modules</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Janssen-Bienhold, Ulrike (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Dedek, Karin (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Janssen-Bienhold, Ulrike (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Dedek, Karin (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>attendance in pre-meeting</td>
</tr>
<tr>
<td>Module contents</td>
<td>Lecture: 14 h Introduction to current neurobiological approaches and results. Seminar: 14 h Discussion of background literature and results of own experiments. Lab course: 3 weeks, each 24 h neuroanatomical experiments in small groups on vertebrate retina and brain.</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>Background and seminar literature will be available in Stud.IP</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Course in the first half of the semester Regular active participation and presentation(s) within the scope of the seminar are required to pass the module</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>BC (Basiscurriculum / Base curriculum)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Form of instruction</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>1</td>
</tr>
<tr>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Practical training</td>
<td>3</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>70 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 70 h
neu210 - Neurosensory Science and Behaviour

Module label Neurosensory Science and Behaviour
Modulkürzel neu210
Credit points 9.0 KP

Workload
270 h
{ 4 SWS Lecture (VO) "Neuroethology" and "Behavioural ecology"
Total workload 180h: 56h contact/ 60h background reading/ 64h exam preparation
2 SWS Seminar (SE) "Current issues of ethology"
Total workload 90h: 28h contact/ 30h literature reading/ 32h preparation of presentation
}

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen
Klump, Georg Martin (Module responsibility)
Langemann, Ulrike (Module counselling)
Mouritsen, Henrik (Module counselling)
Feenders, Gesa (Module counselling)
Klump, Georg Martin (Prüfungsberechtigt)
Mouritsen, Henrik (Prüfungsberechtigt)
Langemann, Ulrike (Prüfungsberechtigt)
Feenders, Gesa (Prüfungsberechtigt)

Prerequisites
Fundamentals of Neurobiology, Behavioural Biology, Evolution, Ecology

Skills to be acquired in this module
++ Neurosci. knowlg. + Expt. methods + Independent research + Scient. literature + Social skills
++ Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics

Upon successful completion of this course, students
- know the fundamentals of behavioural ecology and neuroethology
- are able to present and critically assess scientific data and approaches

Module contents
The lecture "Neuroethology" provides an introduction to the mechanisms underlying the behaviour of animals. Subjects are, e.g., the mechanisms of perception, control of movement patterns, mechanisms of learning, orientation and navigation. The lecture "Behavioural ecology" provides an introduction to topics such as predator-prey interactions, optimal food utilization, spatial and temporal distribution of animals, social relations and group formation, mating systems and reproductive strategies, sexual selection, investment of parents in offspring, and communication. In the seminar "Current issues of Ethology", current original literature relating to behavioural biology is reported and discussed.

Literaturempfehlungen

Links
Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity 30 (Recommended in combination with: neu220 BM "Neurocognition and Psychopharmacology"
Shared course components with (cannot be credited twice): bio610 5.02.611 "Neuroethologie", 5.02.612 "Verhaltensökologie", 5.02.613 "Aktuelle Themen der Ethologie"
)
Reference text Course in the second half of the semester
Regular active participation is required to pass the module.

Modullevel / module level
je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge
Fundamentals of Neurobiology, Behavioural Biology, Evolution, Ecology

Examination
Prüfungszeiten
Type of examination
Final exam of module
as agreed, usually in the break after the winter term
80% written exam (content of the two lecture series), 20% presentation(s)

Form of instruction
Comment
SWS
Frequency
Workload of compulsory attendance
Lecture
4
56
Seminar
2
28
Präsenzzeit Modul insgesamt
84 h
neu220 - Neurocognition and Psychopharmacology

Module label: Neurocognition and Psychopharmacology

Modulkürzel: neu220

Credit points: 6.0 KP

Workload: 180 h

3 SWS Lecture (VO) "Intro. to Cognitive Neuroscience" and "Psychopharmacol." Total workload 135h: 45h contact/ 45 background reading/ 45h exam preparation 1 SWS Supervised excercise (UE) Total workload 45h: 14h contact/ 31h paper reading

Verwendbarkeit des Moduls

- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen

- Thiel, Christiane Margarete (Module responsibility)
- Thiel, Christiane Margarete (Module counselling)
- Thiel, Christiane Margarete (Prüfungsberechtigt)
- Gießing, Carsten (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

++ Neurosci. knowlg. + Expt. methods Independent research + Scient. literature + Social skills
++ Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics

Upon successful completion of this course, students
- know the fundamentals of neurotransmission
- know the basic neural mechanisms underlying attention, learning, emotion, language and executive functions
- understand the relationship between disturbances in neurotransmitter systems, cognitive functions and psychiatric disease
- know the principles of drug treatment for psychiatric disorders
- have in-depth knowledge in selected areas of these topics
- are able to understand, explain and critically assess neuroscientific approaches in animals and humans
- are able to understand and critically assess published work in the area of cognitive neuroscience

Module contents

The lecture "Introduction to Cognitive Neuroscience" gives a short introduction into neuroanatomy and cognitive neuroscience methods and then covers different cognitive functions.

Lecture topics:
- History of cognitive neuroscience
- Methods of cognitive neuroscience
- Attention
- Learning
- Emotion
- Language
- Executive functions.

The supervised exercises either deepen that knowledge by exercises or discussions of recent papers/ talks on the respective topic covered during that week.

The lecture "Psychopharmacology" illustrates the connection between neurotransmitters and behaviour and its links to psychiatric disease. The lecture contains several interactive parts to consolidate and critically evaluate the acquired knowledge.

Lecture topics:
- Introduction to Terms and Definitions in Drug Research
- Dopaminergic and Noradrenergic System
- Cholinergic and Serotonergic System
- GABAergic and Glutamatergic System
- Addiction
- Depression
- Schizophrenia
- Anxiety
- Alzheimer's Disease

Literatureempfehlungen

Links

Language of instruction

English
Module Information

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
30 (Recommended in combination with neu210 "Neurosensory Science and Behaviour", neu300 "Functional MRI data analysis" Shared course components with (cannot be credited twice): bio610 and psy181 (5.02.614 "Introduction to Cognitive Neuroscience", 5.02.615 "Psychopharmacology")

Reference text
Course in the second half of the semester
Regular active participation is required to pass the module.

Module level / module level
je nach Studiengang Pflicht oder Wahlpflicht

Teaching/Learning method

Previous knowledge
Fundamentals of Neurobiology, Bahavioural Biology

Examination
Type of examination
Final exam of module as agreed, usually in the break after the winter term 100% written exam (content of the lectures)

Form of instruction

<table>
<thead>
<tr>
<th>Lecture</th>
<th>3</th>
<th>--</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
neu310 - Psychophysics of Hearing

Module label
Psychophysics of Hearing

Modulkürzel
neu310

Credit points
12.0 KP

Workload
360 h

- 5 SWS Practical (PR) "Experiments in Hearing" Total workload 225h: 70h contact / 110h experimental work / 45h exam preparation
- 1 SWS Supervised exercise (UE) "Fundamentals in psychoacoustic data analysis" Total workload 45h: 15h contact / 30h practising data analysis (incl. SPSS)
- 2 SWS Seminar (SE) "Hearing" Total workload 90h: 30h contact / 60h background reading

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen
Klump, Georg Martin (Module responsibility)
Klump, Georg Martin (Prüfungsberechtigt)
Langemann, Ulrike (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
- Neurosci. knowlg.
- Expt. Methods
- Social skills
- Maths/Stats/Progr.
- Data present./disc.
- Scientific English

Students will learn the basics about performing a psychoacoustic experiment. Based on an experiment in which they study their own hearing, they will learn how to conduct a behavioural study in hearing and analyze the data. In addition, they will be provided with an overview of the mechanisms of auditory perception.

Module contents
The modul comprises (i) a seminar "Hearing" (2 SWS) (ii) an exercise "Fundamentals in psychoacoustic data analysis" (1 SWS), and a (iii) practical course (7 SWS) including aspects of planning and conducting psychoacoustic experiments.

Literaturempfehlungen
Plack, Christopher J. (2005) The sense of hearing. Mahwah, NJ [u.a.] : Erlbaum (sufficient number of copies available in the university library)

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
annually, summer term, second half

Module capacity
6 (in total with bio640)

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
end of summer term
70% report or oral exam, 30% presentation In addition, mandatory but ungraded: regular active participation

Form of instruction
Comment
SWS
Frequency
Workload of compulsory attendance
Exercises
1
SoSe
14
Seminar
2
SoSe
28
Practical training
5
SoSe
70
Lecture
SoSe
0
Präsenzzeit Modul insgesamt
112 h
neu340 - Invertebrate Neurosciences - Neurophysiology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Invertebrate Neurosciences - Neurophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu340</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
</tbody>
</table>

Workload

180 h

- 2 SWS Seminar (SE)
 - Total workload: 72h: 28h contact / 44h background literature reading, preparation for short tests, portfolio assignments and results presentation
- 3 SWS Supervised exercise (UE)
 - Total workload: 108h: 42h contact / 66h data analysis and preparation of portfolio assignments)

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen
- Kretzberg, Jutta (Module responsibility)
- Kretzberg, Jutta (Prüfungsberechtigt)

Prerequisites
- attendance in pre-meeting

Skills to be acquired in this module
- ++ Neurosci. knowlg.
- ++ Expl. Methods
- + Scient. Literature
- + Social skills
- + Maths/Stats/Progr.
- + Independent Research
- + Data present./disc.
- + Scientific English
- + Ethics

Upon successful completion of this course, students
- have knowledge on invertebrate neuronal systems in comparison to vertebrate systems
- have discussed an overview of experimental and theoretical methods of invertebrate neuroscience
- have acquired first practical skills in intracellular recordings from invertebrate neurons
- have acquired basic skills in data analysis
- have acquired an intuitive understanding of membrane potential and action potential generation based on computer simulations

Module contents

The module consists of three weeks of seminar and hands-on lab exercises on intracellular recordings from leech neurons, as well as computer simulations to study the basis of membrane potential and action potential generation.

The seminar covers the following topics:
- Invertebrate neuronal systems in comparison to vertebrate systems
- Ion channels, membrane potential and action potential generation
- Introduction to electrophysiological methods
- Introduction to data analysis methods

In the practical exercises, portfolio assignments will be performed on:
- Qualitative electrophysiological classification of different cell types in the leech nervous system
- Quantitative analysis (stimulus - response relationship) of at least one cell type
- Action potential generation: Comparison of model simulations and experiments
- Planning a small individual team-work project based on the techniques taught in this module, that can be used as basis for the module neu345

Literatureempfehlungen

Course scripts and mandatory scientific literature (3 review articles) discussed in the seminar will be available in Stud.IP. Background and seminar literature will be available in Stud.IP
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, summer term, second half</td>
</tr>
<tr>
<td>Module capacity</td>
<td>12 (This module provides the background for neu345 "Neural Computation in invertebrate systems")</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Module type / type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

basic knowledge of neurobiology, basic MATLAB programming skills

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>during the course (summer term, second half)</th>
<th>Portfolio consisting of short tests, short reports (according to portfolio assignments) and seminar presentation</th>
</tr>
</thead>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Seminar</th>
<th>2</th>
<th>SoSe</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

70 h
neu360 - Auditory Neuroscience

Module label: Auditory Neuroscience
Modulkürzel: neu360
Credit points: 6.0 KP

Workload: 180 h
- 1 SWS Lecture (VO)
 Total workload 45h: 14 h contact / 31 h background reading
- 1 SWS Seminar (SE)
 Total workload 45h: 14 h contact / 15 h background reading / 16 h preparation and presentation
- 2 SWS Supervised exercise (UE)
 Total workload 90h: 10 h contact / 20 h literature search / 60 h work on essay paper

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen
Köppl, Christine (Module responsibility)
Klump, Georg Martin (Prüfungsberechtigt)
Köppl, Christine (Prüfungsberechtigt)

Prerequisites
Recommended previous knowledge/skills: Basics of Neurosensory Science and Behavioural Biology

Skills to be acquired in this module
++ Neurosci. knowlg
+ Expt. methods
++ Scienc. Literature
+ Social skills
++ Interdiscipl. knowlg
++ Data present./disc.
++ Scientific English
+ Ethics

Introduction to Auditory Physiology. May serve as preparation for a Research Module in this area.

Upon successful completion of this course, students
- have profound knowledge on auditory sensory processing at several levels (including cochlear transduction mechanisms, central auditory processing)
- have basic knowledge of the large range of techniques used in auditory research
- are able to read and critically report to others on an original research paper in auditory neuroscience
- are able to research and review a specific topic in auditory neuroscience

Module contents
One week introductory block course, comprised of a lecture series and matching seminar that emphasizes discussion.
Topics:
- Hair cells: structure, transduction mechanism, receptor potential, synaptic transmission
- Basilar papilla / cochlea: structure, micromechanics, amplification; otoacoustic emissions
- Auditory nerve: phase locking, rate coding, Excitation patterns
- Ascending auditory pathways: wiring, principles of excitation/inhibition, examples of cellular/molecular specialisations
- Sound localisation in birds and mammals
- Central auditory processing: imaging techniques, auditory streams, cortex, primates
- Relation between psychophysics and neurophysiology

The introductory block is followed by a supervised literature search and individually written term paper on a specific topic in auditory neuroscience.

Literaturempfehlungen
About 20 selected original papers (selection varies)
Pickles JO (2012) An Introduction to the Physiology of Hearing. Brill, Netherlands

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually, summer term, second half
Module capacity: 15 (
BM neu211 "Neurosensory Science and Behaviour" or BM neu270 "Neurocognition and Psychophysics"

42 / 75
or skills module biox "Current Topics in Hearing Science"

Reference text	Registration procedure / selection criteria: StudIP, final acceptance after assignment of seminar presentation	
Modullevel / module level	MM (Mastermodul / Master module)	
Modulart / typ of module	Wahlpflicht / Elective	
Lehr-/Lernform / Teaching/Learning method		
Vorkenntnisse / Previous knowledge	Basics of Neurosensory Science and Behavioural Biology	
Examination	Prüfungszeiten	Type of examination
Final exam of module	within a few weeks of the end of summer term lecture period	HA

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
psy270 - Functional MRI Data Analysis

Module label	Functional MRI Data Analysis
Modulkürzel | psy270
Credit points | 9.0 KP
Workload | 270 h

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule
- Master's Programme Neuroscience (Master) > Background Modules

Zuständige Personen
Gießing, Carsten (Module responsibility)
Gießing, Carsten (Prüfungsbeauftragter)

Prerequisites
Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module

Goals of module:
Students will learn the basics about planning and performing a neuroimaging study. They will focus on the statistical and methodological background of functional neuroimaging data analysis and analyse a sample functional MRI data set.

Competencies:
++ experimental methods
++ statistics & scientific programming
+ data presentation & discussion
++ group work

Module contents
Theoretical knowledge on functional MRI data analysis
Planning, performance and analysis of functional neuroimaging studies using MATLAB-based software
Hands-on fMRI data analysis with SPM

Literaturempfehlungen

Links
Language of instruction	English
Duration (semesters) | 1 Semester
Module frequency | The module will be offered every summer term.
Module capacity | 15 (The remaining places are reserved for Biology and Neuroscience students.)
Reference text | Since the module is primarily offered for the Master's programme Biology it has to be offered as a blocked course. Please contact us if you are interested in the module but have problems with interfering other courses.

PLEASE NOTE:
We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!

Modullevel / module level | MM (Mastermodul / Master module)
Modulart / typ of module | Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method | blocked course with lecture, interactive seminar and exercise parts
Vorkenntnisse / Previous knowledge | Students need to have solid statistical knowledge as taught in the Introductory Course Statistics and in
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungsterminen</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>end of summer term</td>
<td>Oral or written examination</td>
</tr>
</tbody>
</table>

- Required active participation for gaining credits: 1-2 presentations, participation in discussions on other presentations, attendance of at least 70% in the seminars and exercises (will be checked in StudIP).

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>1</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>14 h</td>
</tr>
</tbody>
</table>
neu380 - Neuroethology and Neurogenetics: Insect Models

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroethology and Neurogenetics: Insect Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu380</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master's Programme Biology (Master) > Background Modules
 • Master's Programme Neuroscience (Master) > Background Modules |

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

Module capacity

unlimited

Modullevel / module level

EB (Ergänzungsbereich / Complementary)

Modulart / typ of module

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

Form of instruction

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td></td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Präsenzeit Modul insgesamt</td>
<td></td>
<td></td>
<td>0 h</td>
</tr>
</tbody>
</table>

SoSe oder WiSe

0

0

0 h
Research Modules

bio810 - Independent Research

<table>
<thead>
<tr>
<th>Module label</th>
<th>Independent Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio810</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zotz, Gerhard (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Zotz, Gerhard (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>der Biologie, Lehrende (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>External research projects are done on an individual basis. They are supervised by one person from Oldenburg (see list of examiners, https://uol.de/fk5/studium/studiengaenge/pruefungsberechtigte) and a local supervisor at any university or research institution in Germany and abroad. Please contact Gerhard Zotz (Gerhard.zotz@uol.de) for details. See https://uol.de/ibu/studium-und-lehre/fach-master-biology/downloads-und-links/(Learning Agreement for External Research Module)</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>++ deepened biological expertise</td>
</tr>
<tr>
<td></td>
<td>++ deepened knowledge of biological working methods</td>
</tr>
<tr>
<td></td>
<td>++ data analysis skills</td>
</tr>
<tr>
<td></td>
<td>++ critical and analytical thinking</td>
</tr>
<tr>
<td></td>
<td>++ independent searching and knowledge of scientific literature</td>
</tr>
<tr>
<td></td>
<td>++ ability to perform independent biological research</td>
</tr>
<tr>
<td></td>
<td>++ data presentation and discussion (written and spoken)</td>
</tr>
<tr>
<td></td>
<td>+ teamwork</td>
</tr>
<tr>
<td></td>
<td>+ project and time management</td>
</tr>
<tr>
<td></td>
<td>++ statistics & scientific programming</td>
</tr>
<tr>
<td>Module contents</td>
<td>Students perform individual research projects to learn: • planning and organization of a research project in a group outside of University of Oldenburg • formulate a scientific hypothesis • planning, performing and analyzing experiments and / or simulations • working with scientific background literature on the specific context of the project • oral presentation and discussion of backgrounds and results in the lab seminar • write a scientific report in publication format • prepare and present a scientific poster</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>varies with chosen topic</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>English, German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>internship report</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Projektorientiertes Modul</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
bio820 - Research Module Fast Track

<table>
<thead>
<tr>
<th>Module label</th>
<th>Research Module Fast Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio820</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Klump, Georg Martin (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Klump, Georg Martin (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

- ++ deepened biological expertise
- ++ deepened knowledge of biological working methods
- ++ data analysis skills
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- ++ ability to perform independent biological research
- ++ data presentation and discussion in German and English (written and spoken)
- + teamwork
- ++ project and time management
- ++ statistics & scientific programming

Module contents

- Literatureempfehlungen
- Links
- Languages of instruction: German, English
- Duration (semesters): 1 Semester
- Module frequency: unregelmäßig
- Module capacity: unlimited
- Modullevel / module level: je nach Studiengang Pflicht oder Wahlpflicht
- Lehr-/Lernform / Teaching/Learning method: intership report

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>written report</td>
<td></td>
</tr>
</tbody>
</table>

Form of instruction

- Seminar

SWS

- Frequency: --
- Workload Präsenzzeit: 0 h
bio900 - Biology Research Module

Module label
Biology Research Module

Modulkürzel
bio900

Credit points
15.0 KP

Workload
450 h

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Research Modules
- Master's Programme Biology (Master) > Research Modules

Zuständige Personen
- Zotz, Gerhard (Module responsibility)
 - der Biologie, Lehrende (Module counselling)
- Zotz, Gerhard (Prüfungsberechtigt)
 - der Biologie, Lehrende (Prüfungsberechtigt)

Prerequisites
Students will learn to plan, perform and analyse a study in a biological field. Topics will be chosen in close coordination with teaching staff. Depending on the particular project, knowledge in statistics, molecular biology, physiology, modelling, or ethology will be necessary. Results will be related to the current biological literature in a written report and be presented in the seminar of the hosting working group.

+ deepened knowledge of biological working methods
++ data analysis skills
++ critical and analytical thinking
++ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
++ data presentation and discussion in German and English (written and spoken)
+ teamwork
++ project and time management
+ statistics & scientific programming

Module contents
The students develop an empirical investigation, carry it out and analyse the results. The students present and discuss their project both orally and in writing

Literaturempfehlungen

Links
https://uol.de/en/biology/groups-our-research

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
unlimited

Module capacity
unlimited

Reference text
Students can choose between many options of individual projects, offered by the different groups involved in the MScBiology study program. All members of the regular IBU Biology faculty at the University of Oldenburg can act as local supervisor (see list of examiners, https://uol.de/fk5/studium/studiengaenge/pruefungsberechtigte). Please refer to the list of options in Stud.IP and contact potential supervisors directly.

Within the Modul bio900 it is possible to take several courses as long as their contents differ substantially. When taking the course group 5.02.960 it is mandatory to choose two courses out of the group A – D.

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>internship report</td>
<td></td>
</tr>
</tbody>
</table>

Final exam of module

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>SoSe oder WiSe</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>SoSe oder WiSe</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Projektorientiertes Modul</td>
<td>10</td>
<td>SoSe und WiSe</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzeit Modul insgesamt</th>
<th>140 h</th>
</tr>
</thead>
</table>
Skills Modules

bio870 - Communicating Plant Sciences

<table>
<thead>
<tr>
<th>Module label</th>
<th>Communicating Plant Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio870</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules

Zuständige Personen
- Zotz, Gerhard (Module responsibility)
- Albach, Dirk Carl (Module counselling)
- Schmaljohann, Heiko (Module counselling)
- Zotz, Gerhard (Prüfungsberechtigt)
- Albach, Dirk Carl (Prüfungsberechtigt)
- Schmaljohann, Heiko (Prüfungsberechtigt)

Prerequisites
- Communicating and practicing scientific presentation techniques (talk, publication, poster)
- Presentation of data and discussion in spoken and written (english)
- Communicating of techniques in problem treatment in free speech and scientific writing
- Independent investigation and knowledge of scientific primary literature
- Interdisciplinary thinking
- Critical and analytical thinking
- Independent searching and knowledge of scientific literature
- Data presentation and discussion (written and spoken)

Module contents
- S: Working group seminar (2 SWS; Choice 1: Functional Ecology; Choice 2: Evolutionary genetics of plants; Choice 3: Plant biodiversity and evolution)
- S: Scientific Writing in Plant Science (2SWS)

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- 12

Modullevel / module level
- MM (Mastermodul / Master module)

Modulart / typ of module
- Wahlmodul / Opportunity

Lehr-/Lernform / Teaching/Learning method
- Vorkenntnisse / Previous knowledge: Ökologie, Flora, Genetik

Examination
- Prüfungszeiten
- Type of examination: Final exam of module
- 1 term paper

Form of instruction
- Seminar

SWS
- 4

Frequency
- WiSe

Workload Präsenzzeit
- 56 h
bio880 - Skills in Plant Systematics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Skills in Plant Systematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio880</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master's Programme Biology (Master) > Skills Modules
• Master's Programme Biology (Master) > Skills Modules |
| Zuständige Personen | Albach, Dirk Carl (Module responsibility)
von Hagen, Klaus Bernhard (Module counselling)
Albach, Dirk Carl (Prüfungsberechtigt)
von Hagen, Klaus Bernhard (Prüfungsberechtigt)
Khan, Gulzar (Prüfungsberechtigt) |
| Prerequisites | In this module, we provide the skills necessary to describe and distinguish species for floras and monographs/first publication of species. For that, an overview over the plant kingdom is provided. Further, various non-molecular methods of systematics are practiced, such as morphometry, SEM, identification key generation, nomenclature, species delimitation methods, and interpretation of phylogenetic analyses.
+ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills + critical and analytical thinking
++ independent searching and knowledge of scientific literature
+ ability to perform independent biological research
++ data presentation and discussion (E) (written and spoken)
+ teamwork
+ statistics & scientific programming |
| Module contents | In the seminar we provide an overview over the larger groups of plants and characters for their grouping. We analyse methods for phylogeny generation, angiosperm classification and description of new taxa. In the exercises morphological characters are investigated in various ways and internet resources for further morphological characters presented. Species delimitation methods for molecular and morphological characters are used. Identification keys are generated and nomenclatural rules discussed. |
| Literatureempfehlungen | |
| Links | |
| Languages of instruction | German, English |
| Duration (semesters) | 1 Semester |
| Module frequency | |
| Module capacity | 8 |
| Modulelevel / module level | MM (Mastermodul / Master module) |
| Modulart / typ of module | Wahlmodul / Opportunity |
| Lehr-/Lernform / Teaching/Learning method | |
| Vorkenntnisse / Previous knowledge | gute Kenntnisse der heimischen Flora |
| Examination | Prüfungszeiten |
| Final exam of module | 1 presentation |
| Form of instruction | SWS |
| Seminar | 2 |
| Exercises | 2 |
| Präsenzzeit Modul insgesamt | 56 h |
bio890 - Current Topics in Biology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio890</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Skills Modules</td>
</tr>
</tbody>
</table>

Zuständige Personen

- Gerlach, Gabriele (Module responsibility)
- Gerlach, Gabriele (Prüfungsberechtigt)
- Laakmann, Silke (Prüfungsberechtigt)

Prerequisites

- + biological knowledge
- + biologically relevant, natural / mathematical scientific basic knowledge
- ++ interdisciplinary knowledge and thinking
- ++ abstract, logical, and analytical thinking
- ++ expanded knowledge in a specific biological field
- ++ presentation of results and factual discussion, both written and spoken
- ++ (scientific) communication skills

To develop skills in the critical analysis and interpretation of results and themes in diverse areas of modern biology, including (but not limited to) evolutionary biology, population genetics, biodiversity, ecology, genomics, ornithology, and neurobiology.

Module contents

Discussion and interpretations of one or more themes in modern biology. The themes and exact content will be provided by the instructor(s) at the beginning of the course. The module bio890 may be taken more than once as long as the content covered in the seminars differ substantially.

Literatureempfehlungen

Varies with chosen topic (will be provided by the instructor(s) at the beginning of the course)

Links

- Languages of instruction: English, German
- Duration (semesters): 1 Semester
- Module frequency: unlimited
- Modulelevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlmodul / Opportunity
- Lehr-/Lernform / Teaching/Learning method
- Vorkenntnisse / Previous knowledge: Teilnahme in einem oder mehreren Grundmodulen des Master Biologie
- Examination: Prüfungszeiten
- Type of examination: open

Final exam of module: 1 Portfolio. Components vary in the seminars. They are specified in Stud.IP in the respective seminar.

Form of instruction

- Seminar

SWS

- 2

Frequency

- SoSe und WiSe

Workload Präsenzeit

- 28 h
Bio777 - Objekte in wissenschaftlichen Sammlungen: Konservierung, Management und Forschungsfragen

<table>
<thead>
<tr>
<th>Module label</th>
<th>Objekte in wissenschaftlichen Sammlungen: Konservierung, Management und Forschungsfragen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio777</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules

Zuständige Personen
- Will, Maria (Module responsibility)
- Albach, Dirk Carl (Module counselling)
- Will, Maria (Prüfungsberechtigt)
- 1 N., N. (Prüfungsberechtigt)

Prerequisites
- +deepened biological expertise
- ++deepened knowledge of biological working methods
- +++interdisciplinary thinking
- +critical and analytical thinking
- +independent searching and knowledge of scientific literature
- +ability to perform independent biological research
- +data presentation and discussion (written and spoken)
- +teamwork
- ++ethics and professional behaviour
- +++project and time management

Module contents
- history of collections at universities and their importance for developing scientific theories;
- origin/formation of collections (objects in time and space)
- the collections of the CvO (overview) and their importance as infrastructure for teaching, learning and research
- collection work in biological collections such as botanical garden, natural history museums, didactical collections or the herbarium (concepts, object handling, conservation, documentation & digitalization)
- developing research questions and projects based on objects/collections, e.g., provenance research
- communicating object-based topics (e.g., speed talk presenting current scientific articles)

Literatureempfehlungen
- articles and book chapters referring to (1) the history/presence/future of collections, (2) collection management and (3) research projects based on objects/collections

Links
- https://uol.de/kustodien/zertifikatsprogramm

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- 10 (Vorlesung & Seminar als transdisziplinäre LV in Kooperation mit Fak. III)

Reference text
- verknüpft mit dem Modul bio783 "Object-based Research Projects in Biological Collections" (unabhängig
Belegung möglich).
Wegen inhaltlicher Überschneidungen kann das Modul nicht zusätzlich zu pb335 belegt werden.

<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlmodul / Opportunity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>2 Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1 Klausur oder 1 mündliche Prüfung (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1 Fachpraktische Übung (unbenotet)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
bio783 - Object-based Research Projects in Biological Collections

Module label
Object-based Research Projects in Biological Collections

Modulkürzel
bio783

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules

Zuständige Personen
Will, Maria (Module responsibility)
Albach, Dirk Carl (Module counselling)
Will, Maria (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
++deepened biological expertise
++deepened knowledge of biological working methods
+data analysis skills
+interdisciplinary thinking
+critical and analytical thinking
++independent searching and knowledge of scientific literature
++ability to perform independent biological research
++data presentation and discussion in German and English (written and spoken)
+teamwork
+ethics and professional behaviour
++project and time management

Module contents
- documentation of a natural history collection (e.g., university or from an herbarium) including a description of the object(s), digitalization, check for traces of use and/or damage;
- if needed: restauration, i.e. fixing loose plants on herbarium vouchers;
- trace biographies of the collector and the collection/object (provenance);
- trace comparable collections using databases;
- as far as possible: identification/validation of scientific identification using databases and scientific literature
- generating and answer scientific questions based on the collection or develop an educational approach (e.g., teaching lecture)
- communicate the results, i.e. prepare a poster for a congress and defend your theses and summarize the results in a manuscripts;
...

Literaturempfehlungen
scientific literature corresponding to the individual research project

Links
Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
irregular

Module capacity
4

Reference text

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlmodul / Opportunity

Lehr-/Lernform / Teaching/Learning
<table>
<thead>
<tr>
<th>method</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Individual</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Exercises</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
neu730 - Biosciences in the Public Eye and in our Laws

Module label: Biosciences in the Public Eye and in our Laws

Modulkürzel: neu730

Credit points: 6.0 KP

Workload: 180 h
- 56h contact / 84h research for presentations / 40h term paper

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Zuständige Personen
- Köppl, Christine (Module responsibility)
- Sienknecht, Ulrike (Module counselling)
- Köppl, Christine (Prüfungsberechtigt)
- Sienknecht, Ulrike (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
- Expt. methods
- Scient. Literature
- Social skills
- Interdiscipl. knowlg
- Data present./disc.
- Scientific English
- Ethics

Upon completion of this course, students
- know basic rules of good scientific practise
- are aware of the legal framework that is relevant to biological research, e.g. on animal welfare or genetically modified organisms
- have practised to research and summarize different viewpoints on biological research, using both scientific (peer-reviewed) and non-scientific sources
- are able to identify and critically discuss ethical conflicts in biological research, e.g., in the context of stem cell research or data manipulation
- are able to prepare and give a coherent presentation in a team
- have practised to lead a group discussion

Module contents

In supervised exercises, students research the ethical aspects and controversial issues on several specific topics in the biosciences. Everyone participates in researching all topics. Students then take turns in summarizing and presenting each topic in small teams, and leading a critical discussion of each topic. Problem-based, independent research of the scientific background by the students is an integral part of this module.

Example topics:
- Good scientific practise and fraud
- Neuroenhancement
- Artificial intelligence
- Animal welfare, Animal experiments
- Overfishing, Nature conservation
- State-of-the-art genetic tools and their implications
- Genetically modified organisms, e.g., in food production, chimeras
- Stem cells
- Humans as experimental subjects

A bonus can be obtained through active participation during the semester. Active participation requires regular oral contributions to the group discussions, that go beyond giving your own talks.
A bonus improves the exam mark by one step (0.3 or 0.4). The bonus is optional, an exam mark of 1.0 is achievable without a bonus. A bonus cannot be applied to pass a failed exam.

Literatureempfehlungen

Links

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: annually, summer term

Module capacity: 18
<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Fundamentals of genetics, physiology, ecology and biological systematics</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>within a few weeks of summer term lecture period</td>
</tr>
<tr>
<td></td>
<td>Term paper</td>
</tr>
<tr>
<td></td>
<td>Regular participation during the semester is required (max 3 days of absence)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>Seminar und Übung</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>SoSe</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
neu751 - Laboratory Animal Science

Module label: Laboratory Animal Science
Modulkürzel: neu751
Credit points: 3.0 KP

Workload: 90 h
- one week full-time in semester break + flexible time for studying and exam preparation

1 SWS Lecture
total workload 45h: 2h contact / 20h background reading / 23h exam preparation

1 SWS Supervised exercise
total workload 45h: 35h contact / 10h background reading

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Molecular Biomedicine (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Zuständige Personen
- Köppl, Christine (Module responsibility)
- Köppl, Christine (Prüfungsberechtigt)
- Langemann, Ulrike (Prüfungsberechtigt)
- Nolte, Arne (Prüfungsberechtigt)
- Heyers, Dominik (Prüfungsberechtigt)
- Ebbers, Lena (Prüfungsberechtigt)
- Dedek, Karin (Prüfungsberechtigt)
- Schmaljohann, Heiko (Prüfungsberechtigt)
- Winklothofer, Michael (Prüfungsberechtigt)

Prerequisites
- none

Skills to be acquired in this module
- ++ Expt. Methods
- + Independent Research
- + Scient. Literature
- ++ Social skills
- ++ Interdiscipl. knowlg
- ++ Scientific English
- ++ Ethics

Upon successful completion of this course, students
- know the relevant EU legislation governing animal welfare and are able to explain its meaning in common language
- understand and are able to critically discuss salient ethical concepts in animal experimentation, such as the three Rs and humane endpoint
- have basic knowledge of the biology and husbandry of laboratory animal species held at the University of Oldenburg (rodents or birds or fish)
- are able to critically assess the needs and welfare of animals without compromising scientific integrity of the investigation
- have practical skills in handling small rodents or birds or fish
- have profound knowledge of anaesthesia, analgesia and basic principles of surgery
- have practised invasive procedures and euthanasia

NOTE: These objectives aim to satisfy the requirements for EU directive A „Persons carrying out animal experiments“ and EU directive D „Persons killing animals“.

Module contents
Background knowledge is taught using the third-party online platform "LAS Interactive" which concludes with a written exam that has to be passed before the practical part. Topics covered are:
- Legislation, ethics and the 3Rs
- Scientific integrity
- Data collection
- Basic biology of rodents, birds and fish
- Husbandry, and nutrition of rodents, birds and fish
- Animal Welfare
- Health monitoring
Practical procedures will first be demonstrated, important aspects will then be practiced under supervision by every participant, on an animal model of their choice (rodents, birds or fish):

- Handling and external examination
- Administration of substances, blood sampling
- Euthanasia and dissection
- Transcardial perfusion
- Anaesthesia and surgery

Literatureempfehlungen

"LAS interactive" internet-based learning platform

Links

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

semester break, every semester

Module capacity

20 (Registration procedure / selection criteria: StudIP, sequence of registration)

Modullevel / module level

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

immediately before the practical part

written exam of 90 minutes

Form of instruction

Comment

SWS

Frequency

Workload of compulsory attendance

Lecture

1

SoSe und WiSe

14

Exercises

1

SoSe und WiSe

14

Präsenzzeit Modul insgesamt

28 h
neu760 - Scientific English

<table>
<thead>
<tr>
<th>Module label</th>
<th>Scientific English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu760</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
</tbody>
</table>

Workload

- 0.5 SWS Lecture (VO)
 - Total workload 23h: 8h contact / 15h research for term paper
- 3.5 SWS Supervised exercise (UE)
 - Total workload 158h: 46h contact / 46h preparation of texts and presentations / 66h term paper

Verwendbarkeit des Moduls

- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Molecular Biomedicine (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Zuständige Personen

- Köppl, Christine (Module responsibility)
- Hildebrandt, Jannis (Prüfungsberechtigt)
- Köppl, Christine (Prüfungsberechtigt)

Prerequisites

- non-native speakers

Skills to be acquired in this module

- Neurosci. knowlg.
- ++ Social skills
- ++ Data present./disc.
- ++ Scientific English

Upon completion of this course, students

- have increased their proficiency in different forms of scientific presentation and communication in English, with special emphasis on neuroscience
- are able to express themselves with correct sentence structure and grammar, correct use of idioms and correct pronunciation
- are proficient in different contexts of scientific communication (e.g., paper, poster and informal exchange by email or phone)
- are able to recognize and avoid common errors of non-native speakers.

Module contents

- Lectures cover
 - characteristics of the different forms of scientific presentations
 - sentence structure using the passive voice
 - scientific vocabulary and terminology as contrasted to common speech
 - appropriate language for communication with scientific editors and referees

Students read neuroscience texts of an advanced level and practice explaining and presenting these in both written and oral form. They also practice different contexts of scientific communication (e.g., paper, poster and informal exchange by email or phone). Emphasis is placed on individual problems in pronunciation and language use errors.

Literaturempfehlungen

http://users.wpi.edu/~nab/sci_eng/ScientificEnglish.pdf

Links

Language of instruction

- English

Duration (semesters)

- 1 Semester

Module frequency

- annually, semester break

Module capacity

- 12

Reference text

- Usually held in the break before summer term
- Outsourced to STELS-OL (Scientific and Technical English Language Service); native English speaker with in-depth neuroscience knowlg.

Modullevel / module level

- je nach Studiengang Pflicht oder Wahlpflicht

Modulart / typ of module

- minimum English level B2 (C1 preferred) according to Common European Framework of Reference for Languages (CEFR)
 - priority to non-native speakers, higher semester
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>within 2 months of completing the course</td>
<td>Portfolio: 70% several quick tests, texts, presentations, 30% term paper Bonus system for active participation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>0.5</td>
<td>WISe</td>
<td>7</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>3.5</td>
<td>WISe</td>
<td>49</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
neu780 - Biological Data Analysis with Python

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biological Data Analysis with Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu780</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
</tbody>
</table>

Workload

180 h

2 SWS Lecture total workload 90h: 30h contact / 60h individual reading 2 SWS Supervised exercise total workload 90h: 45h contact / 45h solving programming exercises

Verwendbarkeit des Moduls

- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Zuständige Personen

Winklhofer, Michael (Module responsibility)

Winklhofer, Michael (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

+ Neurosci. knowlg.
++ Maths/Stats/Progr.
+ Data present./disc.

The objective of the module is the acquisition of programming skills with focus on analysis of neurobiological datasets, using the programming language python. Python is available for any computer platform (PC, Mac, Linux) and is open source (for free), see https://www.python.org/.

Students will learn how to write effective scripts for data processing and visualisation, making use of pre-existing program libraries for various generic purposes (maths, statistics, plotting, image analysis).

Typical applications will be analysis of time series (e.g., electrophysiological recordings, movement data), images (e.g. immunohistochemical images, MRI slices), and spatio-temporal correlations in volume data.

Students will also learn how to produce synthetica data from various noise models to assess signal-to-noise ratio in instrumental datasets.

Module contents

Data types and data structures, control structures, functions, modules, file input/output, Standard libraries and SciPy libraries (Matplotlib, NumPy,...), scikit-image, VPython, ...

Literaturempfehlungen

open access

http://www.swaroopch.com/notes/python/

http://docs.python.org/3/tutorial/index.html

Links

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

semester break, annually

Module capacity

20

Reference text

Shared course components with (cannot be credited twice): pb328 "Einführung in Datenanalyse mit Python" (Professionalisierungsmodul im Bachelorstudium Biologie)

Modullevel / module level

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

No prior knowledge in programming required, but useful.

Examination

Prüfungszeiten

Type of examination

Final exam of module

term break, immediately after the course (2 weeks in February) assignment of programming exercises, 4 out of 5 exercises to be assessed

Form of instruction

Lecture 2 WiSe 28

Exercises 2 WiSe 28

Präsenzzeit Modul insgesamt 56 h
neu790 - Communicating Neuroscience

Module label: Communicating Neuroscience

Modulkürzel: neu790

Credit points: 3.0 KP

Workload:

90 h

(28 h contact / 62 h individual reading and preparing discussion questions)

Verwendbarkeit des Moduls:

- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Zuständige Personen:

- Kretzberg, Jutta (Module responsibility)
- Kretzberg, Jutta (Prüfungsberechtigt)
- Köppl, Christine (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:

- Neurosci. knowlg.
- Scient. Literature
- Social skills
- Interdiscipl. knowlg.
- Data presentation/disc.
- Scientific English
- Ethics

Upon successful completion of this course, students will have thought about and discussed in depth scientific, social and ethical aspects of communication in and about neuroscience. In particular, participants practice critical reading of neuroscience literature, learn about the scientific publication process and discuss science communication to the general public.

Module contents:

The overall goal of critical discussion of neuroscientific results in a scientific, social and ethical context requires preparation and active participation both before (Stud.IP wiki) and during the weekly sessions. Each participant is responsible for the preparation and moderation of at least one session in a group of 2-3 students. For passing the module, additional active participation is required in at least 10 of the seminar sessions. The specific papers and topics that are discussed vary, but typically cover:

- How to find literature?
- How to read different types of scientific papers: Classic papers, review papers, perspective papers, recent original papers?
- Publication process, Authorship and impact metrics
- Alternative publication paths and data sharing in neuroscience
- Science communication for the general public and on social media
- Face-to-face scientific communication

Literatureempfehlungen:

List of published papers, as well as online resources for preparation will be selected by the teachers and participants and announced via Stud.IP.

Background neuroscience textbooks, e.g.:

- Galizia, Lledo ‘Neuroscience – From Molecule to Behavior’, 2013, Springer
- Nicholls et al. ‘From Neuron to Brain’, 5th edition 2012, Sinauer
Links

Related content: Science communication workshop:

https://elearning.uni-oldenburg.de/dispatch.php/course/overview?cid=6fc0dbfa53d7b3f5e3680f52ac7d0f7

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>winter semester</td>
</tr>
<tr>
<td>Module capacity</td>
<td>20 (Registration procedure / selection criteria: StudIP)</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Examination / Prüfungszeiten</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Presentation (ungraded, pass / fail)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
neu800 - Introduction to Matlab

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu800</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
</tbody>
</table>

Workload

- **90 h**
 - 2 SWS Supervised exercise (UE) "Introduction to MATLAB"
 - Total workload 90h: 28h contact / 62h practising learned programming skills

Verwendbarkeit des Moduls

- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Zuständige Personen

Gießing, Carsten (Module responsibility)
Gießing, Carsten (Prüfungsberechtigt)

Prerequisites

- **Skills to be acquired in this module**
 - ++ Expt. Methods
 - + Social skills
 - + Interdiscipl. knowlg.
 - ++ Maths/Stats/Progr.
 - + Data present./disc.
 - + Scientific English

Within this introductory course students will learn the basics of MATLAB programming. Participants will be introduced in fundamental programming concepts.

Module contents

The modul comprises an introduction to data structures, flow control, loops, graphics, basic data analyses with MATLAB, scripts and functions.

Literaturempfehlungen

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: annually, summer term, second half
- Module capacity: 12 (in total with bio640) (shared course components with (cannot be credited twice): bio640)
- Modullevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge

Examination

- Prüfungszeiten: end of summer term
- Type of examination: Working on exercises Regular active participation

Form of instruction

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td></td>
<td>SoSe</td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td>SoSe</td>
<td>0</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td></td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

28 h
neu810 - International Meeting Contribution

Module label: International Meeting Contribution

- Modulkürzel: neu810
- Credit points: 3.0 KP
- Workload: 90 h

Verwendbarkeit des Moduls:
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Zuständige Personen:
- Kretzberg, Jutta (Module responsibility)
- Kretzberg, Jutta (Prüfungsberechtigt)
- Köppl, Christine (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module:
- Neurosci. knowlg.
- Independent research
- Scient. Literature
- Social skills
- Interdiscipl. knowlg.
- Data present./disc.
- Scientific English
- Ethics

Preparation, presentation and critical discussion of own studies for an international audience:
- participate in an international meeting
- prepare a poster or talk for an international meeting
- present own results in a way that is appropriate for the target audience
- put own studies into the context of scientific literature
- acquire additional knowledge about a broader field of research

Module contents:
Active participation in a scientific conference, workshop, summer school etc, lasting a minimum of 3 full days. Student must be the presenter (poster or talk) and an author of the presented work, typically carried out in the context of a research module or the Master thesis.

It is mandatory to present the poster or talk to Christine Köppl or Jutta Kretzberg prior to the meeting and incorporate the feedback on the presentation.

Literatureempfehlungen: dependent on the scientific topic

Links:
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: every semester, flexible
- Module capacity: unlimited (please contact module organizer individually)

Modullevel / module level: MM (Mastermodul / Master module)

Modulart / typ of module: Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge:

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>presentation (ungraded, pass/fail)</td>
<td></td>
</tr>
</tbody>
</table>

Form of instruction: Seminar

SWS: 2
<table>
<thead>
<tr>
<th>Frequency</th>
<th>SoSe und WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
neu820 - Neuroscience Journal Club

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroscience Journal Club</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu820</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td></td>
<td>(30h contact / 60h reading and preparation of oral and poster presentation)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Zuständige Personen
- Mertsch, Sonja (Module responsibility)
- Mertsch, Sonja (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
- Students will learn to read, interpret, present and discuss neuroscientific literature.
 - ++ Neurosci. knowledge
 - + Expt. Methods
 - ++ Scient. Literature
 - ++ Social skills
 - + Interdiscipl. knowledge
 - ++ Data present./disc.
 - + Scientific English
 - + Ethics

Module contents
Week 1: How to read and present a scientific paper and how to generate a scientific poster? Distribution of papers to participants
Week 2: Example presentation of a scientific paper by the teacher with discussion
Week 3-13: Oral presentation / moderation of discussion of one scientific paper per week by one or two student(s)
Week 14: Short poster presentations of all students

The focus topic of the scientific literature will change between semesters.
In winter semester 2021/22, the topic will be regenerative ophthalmology with the focus on tissue engineering.

Literaturempfehlungen
Scientific literature will be available in Stud.IP

Links
Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: Winter term, annually

Module capacity: 20

Modulart / typ of module: Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge

Examination

Prüfungszwecke: During the semester
Type of examination: Presentation and attendance of at least 70% in the seminars

Form of instruction: Seminar

SWS: 2

Frequency: SoSe und WiSe

Workload Präsenzzeit: 28 h
neu725 - Multivariate Statistics and Applications in R

<table>
<thead>
<tr>
<th>Module label</th>
<th>Multivariate Statistics and Applications in R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>neu725</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>2 SWS Lecture (30h contact / 60h self-studies and exam preparation)</td>
</tr>
<tr>
<td></td>
<td>2 SWS Seminar (30h contact / 60h statistical data analysis in R)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Neuroscience (Master) > Skills Modules</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Hildebrandt, Andrea (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Hildebrandt, Andrea (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>recommended in semester 1/3 weeks 11-13 of summer semester</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Students will acquire basic knowledge in planning empirical investigations, managing and understanding quantitative data and conducting a wide variety of multivariate statistical analyses. They will learn how to use the statistical methodology in terms of good scientific practice and how to interpret, evaluate and synthesize empirical results from the perspective of statistical modeling in basic and applied research context. The courses in this module will additionally point out statistical misconceptions and help students to overcome them.</td>
</tr>
<tr>
<td></td>
<td>+ Independent research</td>
</tr>
<tr>
<td></td>
<td>+ Scientific Literature</td>
</tr>
<tr>
<td></td>
<td>+ Social skills</td>
</tr>
<tr>
<td></td>
<td>++ Interdisciplinary knowledge</td>
</tr>
<tr>
<td></td>
<td>++ Mathematics/Statistics/Programming</td>
</tr>
<tr>
<td></td>
<td>++ Data presentation/discussion</td>
</tr>
<tr>
<td></td>
<td>++ Scientific English</td>
</tr>
<tr>
<td></td>
<td>++ Ethics</td>
</tr>
</tbody>
</table>

Module contents

Part 1: Multivariate Statistics I (lecture):
Graphical representation of multivariate data
The Generalized Linear Modeling (GLM) framework
Multiple and moderated linear regression with quantitative and qualitative predictors
Logistic regression
Multilevel regression (Generalized Linear Mixed Effects Modeling – GLMM)
Non-linear regression models
Path modeling
Factor analysis (exploratory & confirmatory)
(Multilevel) Structural equation modeling (SEM linear and non-linear)

Part 2: Analysis Methods with R (seminar)
Data examples and applications of GLM, GLMM, polynomial, spline and local regression, path modeling, factor analyses and SEM

Literatureempfehlungen
Course material will be available in Stud.IP

Links
Language of instruction English
Duration (semesters) 1 Semester
Module frequency winter term, annually
Module capacity unlimited (recommended in semester 1/3 weeks 11-13 of summer semester)
Modulelevel / module level MM (Mastermodul / Master module)
Modulart / typ of module Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge

Examination Prüfungszeiten Type of examination
Final exam of module End of winter semester written exam attendance of at least 70% in the seminars (in
<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
Abschlussmodul

mam - Master’s Thesis Module

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master’s Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Biology (Master) > Abschlussmodul</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>der Biologie, Lehrende (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>see examination regulations Faculty V and subject-specific annex, §20 https://uol.de/en/course-of-study/exams/biology-master-614</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Successful completion of the Master module demonstrates that students are able to work on a problem in the field of Biology within a fixed period applying scientific methods. ++ deepened biological expertise ++ deepened knowledge of biological working methods ++ data analysis skills ++ critical and analytical thinking ++ independent searching and knowledge of scientific literature ++ ability to perform independent biological research ++ data presentation and discussion in German and English (written and spoken) + teamwork + ethics and professional behaviour ++ project and time management</td>
</tr>
<tr>
<td>Module contents</td>
<td>Preparing the Master thesis Active participation in the seminar of the research group, in which the Master thesis is written</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>Supervisors may supply an initial reading list with important literature. The students are expected to find and use further literature as needed.</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>semianual</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>Abschlussmodul (Abschlussmodul / Conclude)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Seminar, Masterarbeit</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>master's thesis (90%)</td>
</tr>
<tr>
<td>Form of Instruction</td>
<td>Colloquium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>