Mastermodule

psy110 - Research methods

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Research methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy110</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Martin Hecht</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele

Goals of module:

Students will acquire basic knowledge about the planning of an empirical investigation, setting up computer-controlled experiments, multivariate statistical data analysis, and the interpretation, evaluation and synthesis of empirical results.

Competencies:

- + interdisciplinary knowledge & thinking
- ++ statistics & scientific programming
- ++ data presentation & discussion
- + independent research
- + scientific literature
- + ethics / good scientific practice / professional behavior
- ++ critical & analytical thinking
- + scientific communication skills
- + group work

Modulinhalte

Part 1: Multivariate Statistics I (lecture)

- Basic concepts of probability, statistical inference, graphical representation of data
- Linear regression (simple and multiple) and analysis of variance
- Logistic regression, multivariate t-test

Part 2: Evaluation research (seminar)

- Methods and paradigms of evaluation
- Multidimensional Scaling and cluster analysis
- Decision making, meta-analysis

Part 3: Computer-controlled experimentation (seminar)

- Computer hardware basics
- Scripting and programming in Presentation
- Combining stimulus delivery with EEG
- Temporal precision

Part 4: Multivariate Statistics II (lecture)

- Principal component analysis and factor analysis
- Classification and discrimination
- Survival analysis
- Advanced methods (e.g., Bayesian estimation, ICA, machine learning)

Literaturrempfehlungen

Links

Unterrichtssprache English

Dauer in Semestern 2 Semester

Angebotsrhythmus Modul The module will be offered every winter term.

Aufnahmekapazität Modul unbegrenzt
<table>
<thead>
<tr>
<th>Modullevel</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Parts 1 and 4: lectures; Parts 2 and 3: seminars; additional tutorials are offered.</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>basic statistics; otherwise please attend Introductory Course Statistics</td>
</tr>
<tr>
<td>Prüfung Prüfungszeiten Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>The module will be tested with an oral exam (20 min). Bonus for creating a script for the presentation on experimental stimuli in part 3.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2 semester hours per week in winter term, 4 semester hours per week in summer term</td>
<td>6</td>
<td>SunSem and WinSem</td>
<td>84 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>Part 2: 2 semester hours per week Part 3: 4 semester hours per week in the first half of the winter term.</td>
<td>4</td>
<td>WinSem</td>
<td>56 h</td>
</tr>
<tr>
<td>Tutorial</td>
<td>winter term: 2 hours/week (statistics) summer term: 2 x 2 hours/week (statistics and R)</td>
<td></td>
<td>SunSem and WinSem</td>
<td>0 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>140 h</td>
</tr>
</tbody>
</table>
Psy120 - Psychological diagnostics

Modulbezeichnung: Psychological diagnostics
Modulcode: psy120
Kreditpunkte: 9.0 KP
Workload: 270 h

Verwendet in Studiengängen:
- Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in:
- module responsibility: Andreas Hellmann
- authorized examiners: Andreas Hellmann
- Module counseling: Stefan Debener

Teilnahmevoraussetzungen: Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele:
Goals of module:
Students will acquire specific knowledge about psychological assessment and shall be able to utilize the knowledge both within a research context and within an applied context. They will learn to analyse a psychological question in terms of psychological assessment, design and plan the assessment process, select appropriate means, techniques and instruments, apply methods and conduct measurements, analyse and combine gathered information, draw conclusions, write reports and deliver expert opinion, reflect on the assessment process, follow ethical and professional rules.

Competencies:
- Neuropsychological / neurophysiological knowledge
- Interdisciplinary knowledge & thinking
- Ethics / good scientific practice / professional behavior
- Critical & analytical thinking

Modulinhalte:
Part 1: Introduction to Psychological Assessment (lecture)
- models and approaches
- methods, processes, guidelines
- theory of testing, approaches to test construction

Part 2: Psychological Testing (seminar)
- types of tests
- exercises in testing / practising tests

Part 3: Assessment in Clinical Neuropsychology (seminar)
- specific knowledge
- exercises in testing / practising tests

Literaturempfehlungen:

Links:
Unterrichtssprache: English
Dauer in Semestern: 2 Semester
Angebotsrhythmus Modul: The module will be offered every winter term.
Aufnahmekapazität Modul: unlimited
Modullevel: MM (Mastermodul / Master module)
Modulart: Pflicht / Mandatory
Lern-/Lehrform / Type of program

Part 1: 1 lecture; Part 2: 1 seminar; Part 3: 1 seminar

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>summer term</td>
<td>The module will be tested by a practical exercise (test application and protocol). Bonus for a presentation including test and attendance of at least 70% in the seminars.</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>4</td>
<td>SumSem</td>
<td>56 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

84 h
psy130 - Communication of scientific results

<table>
<thead>
<tr>
<th>Modulebezeichnung</th>
<th>Communication of scientific results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy130</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendet in Studiengängen
- Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in
- module responsibility
 - Christoph Siegfried Herrmann
 - Daniel Strüber

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele
Goals of module:
Students will acquire specific knowledge about the presentation of scientific results both orally and in writing. Students will learn modern techniques for presentation, literature research and writing skills. They will also be taught about arguing scientifically.

Competencies:
- **+** data presentation & discussion
- **++** scientific literature
- **++** scientific English / writing
- **++** scientific communication skills
- + group work

Modulinhalte

Part 1: Communication of scientific results (seminar)
- Literature search
- Presentation skills
- Writing skills

Part 2: Psychological colloquium
Experienced scientists from various psychological disciplines will be giving talks about their experimental results. Speakers will be invited also from other universities. Students are encouraged to discuss the results with the experts and to make suggestions on whom to invite.

Literaturempfehlungen

Links

Unterrichtssprache
English

Dauer in Semestern
1-2 Semester

Angebotsrhythmus Modul
Part 1 will be offered every winter term. Part 2 will be offered every semester.

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Students can chose whether they want to attend the colloquium in the first, second or both semesters.

Modullevel
MM (Mastermodul / Master module)

Modulart
Pflicht / Mandatory

Lern-/Lehrform / Type of program
Communication of scientific results: seminar; Psychological colloquium: colloquium

Vorkenntnisse / Previous knowledge

Prüfung
The module requires an oral presentation that will be evaluated. Bonus for active participation (contribution to discussion, e.g. questions or comments) during the colloquium and attendance of at least 8 colloquium sessions.

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Colloquium</td>
<td></td>
<td>2</td>
<td>SumSem and WinSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
psy140 - Minor

Modulebezeichnung: Minor
Modulecode: psy140
Kreditpunkte: 9.0 KP
Workload: 270 h

Verwendet in Studiengängen:
- Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in:

Teilnahmevoraussetzungen:
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele:
Goals of module:
Students will gain an overview of non-psychological topics related to cognitive neuroscience. This is intended to enable students to see how psychological theories apply in other fields. Possible modules are listed below.
Upon approval German speaking students can attend a career-relevant language course (maximum of 6 CP for this module). Students who's first language is not German, may take German classes.

Competencies:
++ interdisciplinary knowledge & thinking

Modulinhalte:
Modules from the following fields can be taken without prior approval:
- Cellular and molecular biology
- Behavioural neurobiology
- Psychophysics and Audiology
- Artificial intelligence and knowledge representation
- Man machine interaction (not in combination with module psy220 Human Computer Interaction)
- Computational neuroscience
- Evolutionary biology
- Rehabilitation pedagogics (taught in German)
- Linear models
- General linear models and semiparametric models
- Philosophy (taught in German)
- German as a foreign language (for non-German students)

Literaturempfehlungen:

Links:

Unterrichtsprachen:
English, German

Dauer in Semestern:
1 Semester

Angebotsrhythmus Modul:
unregelmäßig

Aufnahmekapazität Modul:
unbegrenzt

Hinweise:
PLEASE NOTE:
- If a course is not listed here, please request approval BEFORE you start the course
- Courses must be at Master's level (except language courses)
- Course descriptions need to state clear pass/fail criteria
- Language courses other than 'German as a foreign language' need to be career-relevant (i.e. necessary for internship, practical project or Master's thesis) and require approval
- Content of the Minor courses need to be clearly different from other taken courses of the study program

Modulelevel:
MM (Mastermodul / Master module)

Modulart:
Pflicht / Mandatory

Lern-/Lehrform / Type of program:
Lectures and seminars (depends on the chosen modules)

Vorkenntnisse / Previous knowledge:

Prüfung:

Gesamtmodul:
If grades are earned in the minor, those are counted as pass/fail. Certificates for grades can be separately requested from the examination office.
psy150 - Clinical Psychology

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Clinical Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy150</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Christiane Margarete Thiel</td>
</tr>
<tr>
<td>Teilnahmeverzichtungen</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Goals of the Module:</td>
</tr>
<tr>
<td></td>
<td>Students acquire scientifically sound, critical thinking regarding the genesis and treatment of various mental illnesses; decision making based on the medical guidelines and evidence-based practice.</td>
</tr>
<tr>
<td></td>
<td>Competencies:</td>
</tr>
<tr>
<td></td>
<td>++ Neuropsychological / neurophysiological knowledge</td>
</tr>
<tr>
<td></td>
<td>+ experimental methods</td>
</tr>
<tr>
<td></td>
<td>+ data presentation & discussion</td>
</tr>
<tr>
<td></td>
<td>+ scientific literature</td>
</tr>
<tr>
<td></td>
<td>+ critical & analytical thinking</td>
</tr>
<tr>
<td></td>
<td>+ knowledge transfer</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>The first part of the module provides students with a theoretical and practical background on neurobiological and neurochemical bases of psychiatric disorders and pharmacological and psychotherapeutic interventions. In the second part, the students will learn to plan and assess the effectiveness of psychological interventions for selected disorders.</td>
</tr>
<tr>
<td></td>
<td>Part 1: Neurobiological basis of psychiatric disorders and pharmacological intervention (lecture)</td>
</tr>
<tr>
<td></td>
<td>• Basics of neurotransmitter systems and psychopharmacology</td>
</tr>
<tr>
<td></td>
<td>• Substance Abuse (e.g. psychostimulants, hallucinogens)</td>
</tr>
<tr>
<td></td>
<td>• Depression</td>
</tr>
<tr>
<td></td>
<td>• Anxiety Disorders</td>
</tr>
<tr>
<td></td>
<td>• Alzheimer’s Disease</td>
</tr>
<tr>
<td></td>
<td>• Schizophrenia</td>
</tr>
<tr>
<td></td>
<td>Part 1: Psychotherapeutic intervention of selected psychiatric disorders (seminar)</td>
</tr>
<tr>
<td></td>
<td>Part 2: Psychological interventions within the framework of evidence-based medicine (seminar)</td>
</tr>
<tr>
<td></td>
<td>• (partly in German): Concepts of evidence based treatment and treatment of acquired dysfunctions of the brain</td>
</tr>
<tr>
<td></td>
<td>• Treatment of ADHD</td>
</tr>
<tr>
<td></td>
<td>Selected papers (part 2)</td>
</tr>
<tr>
<td>Links</td>
<td>Unterrichtsprachen: English, German</td>
</tr>
<tr>
<td></td>
<td>Dauer in Semestern: 2 Semester</td>
</tr>
<tr>
<td></td>
<td>Angebotsrhythmus Modul: Part 1 will be offered every winter term, part 2 every summer term.</td>
</tr>
<tr>
<td></td>
<td>Aufnahmekapazität Modul: unbegrenzt</td>
</tr>
<tr>
<td></td>
<td>Modullevel: MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td></td>
<td>Modulart: Wahlpflicht / Elective</td>
</tr>
<tr>
<td></td>
<td>Lern-/Lehrform / Type of program: Part 1: lecture and seminar; part 2: seminar</td>
</tr>
<tr>
<td></td>
<td>Vorkenntnisse / Previous knowledge: 8 / 35</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>in the term holiday (usually March)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>4</td>
<td></td>
<td>SunSem and WinSem</td>
<td>56 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 84 h
psy170 - Neurophysiology

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Neurophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy170</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Stefan Debener</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele

Goals of module:

Students will understand the basic concepts of biomedical signal processing. They will use EEG analysis tools interactively and independently and will understand the complete chain of EEG analysis steps, from data import to the illustration of results. They will be able to use open source tools for EEG analysis and apply theoretical knowledge to practical problems of physiology.

Competencies:

++ Neuropsychological / neurophysiological knowledge
++ experimental methods
++ statistics & scientific programming
++ ethics / good scientific practice / professional behavior
+ group work
+ project & time management

Modulinhalte

Students will acquire specific knowledge about neurophysiology and neuroanatomy, learn the fundamental concepts of multi-channel EEG analysis, and acquire hands-on skills in using EEGLAB, an open-source software toolbox for advanced EEG analysis.

Part 1: Neurophysiology and neuroanatomy (lecture)

- Neurophysiology, EEG, EMG, ECG
- Neuroanatomy
- Time-domain and frequency-domain analysis methods

Part 2: EEG recording and analysis (theoretical-practical seminar)

- Recording and analysis of biomedical signals
- Averaging, filtering, signal-to-noise
- Topographical EEG analysis

Part 3: EEG analysis with Matlab (theoretical-practical seminar)

- EEGLAB file I/O, data structure and scripting
- Preprocessing, artefact rejection and artefact correction
- Statistical decomposition
- Event-related potentials, topographical mapping and power spectra
- Illustration of results

Literaturempfehlungen

Links

- Unterrichtssprache: English
- Dauer in Semestern: 2 Semester
- Angebotsrhythmus Modul: The module will be offered every winter term.
- Aufnahmekapazität Modul: 24 (The lecture is not restricted.)
Hinweise

PLEASE NOTE:

We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!

Modullevel

MM (Mastermodul / Master module)

Modulart

Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Part 1: lecture; Part 2: theoretical-practical seminar; Part 3: theoretical-practical seminar; additional tutorial

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsf orm</th>
</tr>
</thead>
<tbody>
<tr>
<td>exam period at the end of the summer term</td>
<td>The module will be tested with a written exam of 2 h duration. Bonus for recording electroencephalographic data.</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
</table>
| Lecture | 2 semester hours per week in first half of the winter term.
theory and practice seminar | 2 semester hours per week in second half of the winter term.
2 semester hours per week in summer term. | 1 | WinSem | 14 h |
| | | 3 | SumSem and WinSem | 42 h |
| Tutorial | 2 hours/week | | SumSem | 0 h |
| Präsenzzeit Modul insgesamt | | | | 56 h |
Psy181 - Neurocognition

Module Details:
- **Module Code**: Psy181
- **Credit Points**: 6.0 KP
- **Workload**: 180 h
- **Used in Study Programs**: Master Neurocognitive Psychology > Mastermodule
- **Responsibility**: Christiane Margarete Thiel

Requirements:
Enrollment in Master's programme Neurocognitive Psychology.

Goals of Module:
Students should be able to recognize and critically evaluate the value of considering neuroscience in the study of psychological topics.

Competencies:
- ++ neuropsychological / neurophysiological knowledge
- ++ interdisciplinary knowledge & thinking
- ++ data presentation & discussion
- ++ scientific literature
- + scientific communication skills
- + group work

Module Contents:
Students will first acquire a general understanding of the brain mechanisms of different cognitive functions and the methods used to study these functions. They will then apply this knowledge by discussing current research topics (part 1). General knowledge will be focused on the relation between the development of the human brain and the cognitive processes it supports (part 2).

Part 1: Introduction to cognitive neuroscience (lecture and seminar)
- Brain and cognition, methods of cognitive neuroscience
- Attention, learning and memory
- Emotional and social behaviour
- Language, executive functions

Part 2: Neurocognitive development (seminar)
- Brain development and cortical plasticity
- Effects of early-life stress on brain development
- Development of object recognition, social cognition, memory, and executive functions

Recommended Literature:

Additional Information:
- **Language**: English
- **Duration in Semesters**: 1 Semester
- **Offering Rhythm**: The module will be offered every winter term.
- **Enrollment Capacity**: 20 students (Part 1 is unrestricted, Part 2 is restricted to 20 students.)
- **Module Level**: MM (Mastermodul / Master module)
- **Module Type**: Wahlpflicht / Elective
- **Lectures / Program Type**: Part 1: lecture and seminar; Part 2: seminar
- **Prerequisites**: The module will be tested with a written exam of 2 h duration on the contents of part 1.

Links:
- [Course Information](#)

Module Information:
- **Module Code**: Psy181
- **Credit Points**: 6.0 KP
- **Workload**: 180 h
- **Used in Study Programs**: Master Neurocognitive Psychology > Mastermodule
- **Responsibility**: Christiane Margarete Thiel

Requirements:
Enrollment in Master's programme Neurocognitive Psychology.

Goals of Module:
Students should be able to recognize and critically evaluate the value of considering neuroscience in the study of psychological topics.

Competencies:
- ++ neuropsychological / neurophysiological knowledge
- ++ interdisciplinary knowledge & thinking
- ++ data presentation & discussion
- ++ scientific literature
- + scientific communication skills
- + group work

Module Contents:
Students will first acquire a general understanding of the brain mechanisms of different cognitive functions and the methods used to study these functions. They will then apply this knowledge by discussing current research topics (part 1). General knowledge will be focused on the relation between the development of the human brain and the cognitive processes it supports (part 2).

Part 1: Introduction to cognitive neuroscience (lecture and seminar)
- Brain and cognition, methods of cognitive neuroscience
- Attention, learning and memory
- Emotional and social behaviour
- Language, executive functions

Part 2: Neurocognitive development (seminar)
- Brain development and cortical plasticity
- Effects of early-life stress on brain development
- Development of object recognition, social cognition, memory, and executive functions

Recommended Literature:

Additional Information:
- **Language**: English
- **Duration in Semesters**: 1 Semester
- **Offering Rhythm**: The module will be offered every winter term.
- **Enrollment Capacity**: 20 students (Part 1 is unrestricted, Part 2 is restricted to 20 students.)
- **Module Level**: MM (Mastermodul / Master module)
- **Module Type**: Wahlpflicht / Elective
- **Lectures / Program Type**: Part 1: lecture and seminar; Part 2: seminar
- **Prerequisites**: The module will be tested with a written exam of 2 h duration on the contents of part 1.

Links:
- [Course Information](#)
Bonus for a presentation and participation in discussions on other presentations in the seminar.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>1</td>
<td></td>
<td>WinSem</td>
<td>14 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>3</td>
<td></td>
<td>WinSem</td>
<td>42 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
psy190 - Sex and Cognition

Modulbezeichnung: Sex and Cognition
Modulcode: psy190
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendet in Studiengängen:
- Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in:
- module responsibility
 - Daniel Strüber

Teilnahmevoraussetzungen:
Enrolment in Master's programme Neurocognitive Psychology. Neuroscience students can take part on request.

Kompetenzziele:
Goals of module:
Students will acquire specific knowledge about sex differences in cognitive abilities and social behaviours. They will be able to understand the interrelated impact of social and biological influences on the brain's control of the (sex-specific) behaviours. Students should be able to critically evaluate behavioural sex differences from different perspectives and to reflect on possible implications for society.

Competencies:
++ neuropsychological / neurophysiological knowledge
++ interdisciplinary knowledge & thinking
++ data presentation & discussion
++ scientific literature
+ critical & analytical thinking
++ scientific communication skills
+ group work
+ project & time management

Modulinhalt:

Part 1: Introduction to the study of sex differences (lecture)
- The measurement of sex differences
- Sex differences in emotion
- Sex differences in aggression
- Sex differences in cognitive abilities
- Hormones, sexual differentiation, and gender identity
- Sex hormones and play preferences
- Sex differences in hemispheric organization
- Brain size and intelligence

Part 2: Sex, brain, and behaviour (seminar)
- Sex differences in empathy
- The extreme male brain theory of autism (S. Baron-Cohen)
- Sex differences in neuropsychiatric disorders
- Sex differences in stress response
- Social implications of sex differences

Literaturempfehlungen:

Links:
- Unterrichtssprache: English
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: The module will be offered every summer term.
- Aufnahmekapazität Modul: 30
- Modullevel: MM (Mastermodul / Master module)
- Modulart: Wahlpflicht / Elective
- Lern-/Lehrform / Type of program: Part 1: lecture; Part 2: seminar
- Vorkenntnisse / Previous knowledge
Prüfung

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>during summer term</td>
<td>The module requires an oral presentation that will be evaluated.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>2</td>
<td>SumSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>2</td>
<td>SumSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
psy200 - Neuropsychology

Modulebezeichnung
Neuropsychology

Modulcode
psy200

Kreditpunkte
9.0 KP

Workload
270 h

Verwendet in Studiengängen
• Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in
module responsibility
- Stefan Debener

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele
Goals of module:
Students will learn to understand changes in thinking and behaviour that may arise from brain dysfunctions (part 1, 4), acquire specific knowledge on multisensory processes (part 2), and learn to understand, communicate and evaluate progress in clinical practice and experimental research in neuropsychology (part 3, 4).

Competencies:
++ neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ experimental methods
+ data presentation & discussion
++ scientific literature
+ critical & analytical thinking
+ scientific communication skills

Modulinhalte
Part 1: Introduction to Clinical Neuropsychology (lecture)
• Cortical lobes (anatomy, functions, lesion symptoms, neuropsychological tests)
• Higher functions (learning & memory, language, emotion, spatial behavior attention)
• Plasticity and disorders (development, learning and reading disabilities, recovery)

Part 2: Topics in Experimental Neuropsychology (seminar)
• Neural properties of sensory processing in a multiple sensory systems framework
• Human brain studies of multisensory processes
• Cross-modal plasticity

Part 3: Research Colloquium Clinical and Experimental Neuropsychology (colloquium)
• Presentations covering recent advances in the field of Experimental and Clinical Neuropsychology

Part 4: Topics in Clinical Neuropsychology (taught partly in German)
• Clinical neuroanatomy
• Neurodegenerative diseases
• Dementia

Literaturempfehlungen

Links

Unterrichtsprachen
English , German

Dauer in Semestern
2-3 Semester

Angebotsrhythmus Modul
The module will be offered every winter term.

Aufnahmekapazität Modul
30 (Part 4 is not restricted.)

Hinweise
3 CP for each module part, choose 3 out of 4 parts! Part 1 (lecture) is mandatory.

Modullevel
MM (Mastermodul / Master module)

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Part 1: lecture; Part 2: seminar; Part 3: colloquium; Part 4: seminar

Vorkenntnisse / Previous knowledge
Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul | exam period at the end of winter term | The module will be tested with a written exam of 2 h duration. Bonus for a presentation and participation in discussions on other presentations and attendance of at least 70% in part 2 and 3.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>4</td>
<td></td>
<td>SunSem and WinSem</td>
<td>56 h</td>
</tr>
<tr>
<td>Colloquium</td>
<td>2</td>
<td></td>
<td>SunSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt | 112 h
psy210 - Applied Cognitive Psychology

Modulbezeichnung
Applied Cognitive Psychology

Modulcode
psy210

Kreditpunkte
6.0 KP

Workload
180 h

Verwendet in Studiengängen
- Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in
module responsibility
- Jochem Rieger

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology. Neuroscience students can take part on request.

Kompetenzziele
Goals of the module:
Students will gain an overview of theories of (Neuro)Cognitive Psychology with potential for application. On completion of this module students should have a repertoire of cognitive psychology concepts relevant for real world situations, be able to transfer the learned theoretical concepts into practical contexts and evaluate potential issues arising in the process of translation.

Competencies:
++ Neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
+ experimental methods
+ scientific literature
+ ethics / good scientific practice / professional behavior
+ critical & analytical thinking
+ scientific communication skills
+ knowledge transfer

Modulinhalte
The module will cover core concepts of cognitive psychology, their neuronal basis, basic knowledge of neuroimaging and data analysis techniques. Special emphasis will be put on research aiming at complex real-world settings and translation of basic science into practice. Examples of successful transfers will be analyzed. The lecture provides the theoretical basis. In the seminar the material is consolidated by examples from the literature which will be presented, critically analyzed and discussed.

Part 1: (Neuro)Cognitive Psychology in the wild I (lecture)

- Neurocognitive Psychology with emphasis in real world context
- Methodological considerations: Generalization, validity of theories and research methods
- Information uptake and representation: Sensation, perception, categorization
- Selection of information and capacity: Attention and memory enhancement and failure
- Generation and communication: Language, reading, dyslexia
- Pursuing goals: Thinking, problem solving and acting

Part 2: (Neuro)Cognitive Psychology in the wild II (seminar)
In the accompanying seminar we will work through recent examples in the literature for topics of the lecture. The goal is to apply novel knowledge from the lecture to understand and critically discuss actual research approaches.

Literaturrempfehlungen

Links
Unterrichtssprache
English

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich im Sommersemester (Vorlesung und Seminar laufen parallel)

Aufnahmekapazität Modul
30

Modullevel
MM (Mastermodul / Master module)

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Part 1: 1 lecture (2 SWS); Part 2: 1 seminar (2 SWS)

Vorkenntnisse / Previous knowledge

Prüfung
Prüfungszeiten
Prüfungsform
Gesamtmodul
last class in summer term
The module will be evaluated with a written exam

18 / 35
of 2 hours duration.
Bonus for a presentation (speech) and participation in discussions on other presentations in the seminar.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>SumSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td></td>
<td>SumSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
psy220 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Modulebezeichnung</th>
<th>Human Computer Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy220</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Jochem Rieger</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Enrolment in Master's programme Neurocognitive Psychology or other programs related to the field (e.g. neuroscience, computer science, physics etc.).</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Goals of module: The goal of the module is to provide students with basic skills required to plan, implement and evaluate devices for human computer interaction. As a specific goal the module works toward the implementation of a brain computer interface (BCI). BCIs are ideal showcases as they fully span the interdisciplinary field of HCI design, implementation and evaluation. Competencies: ++ Neuropsychological / neurophysiological knowledge ++ interdisciplinary knowledge & thinking + experimental methods ++ statistics & scientific programming + critical & analytical thinking + scientific communication skills + knowledge transfer + group work + project & time management</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>In this module we will address human computer interaction (HCI) in its interdisciplinary requirements focusing on the perspective from neurocognitive psychology. The students learn core concepts in Human Computer Interaction plus data recording and analysis techniques related to Brain Machine Interfacing.</td>
</tr>
<tr>
<td></td>
<td>Part 1: Foundations of HCI and BCI (lecture)</td>
</tr>
<tr>
<td></td>
<td>- Human information processing and models of human cognition (Perception, attention, memory, emotion and individual differences)</td>
</tr>
<tr>
<td></td>
<td>- Computer interfaces for interaction</td>
</tr>
<tr>
<td></td>
<td>- Data analysis techniques for brain machine interfacing (time series analysis, feature selection, classification)</td>
</tr>
<tr>
<td></td>
<td>- Evaluation techniques</td>
</tr>
<tr>
<td></td>
<td>Part 2: HCI and BCI in practice (practical course)</td>
</tr>
<tr>
<td></td>
<td>The second part of the module builds upon the theoretical concepts elaborated in the first. We will work through recent applications published in the literature and, where applicable, implement parts of a BCI-system and conduct experiments.</td>
</tr>
<tr>
<td></td>
<td>Additional literature and material will be provided on the course website.</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>English</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>The module will start every summer term with part 1. Part 2 will be offered in the winter term.</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>15</td>
</tr>
<tr>
<td>Hinweise</td>
<td>We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Part 1: lecture; Part 2: practical course</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>
The module will be evaluated with an oral exam (20 min). Bonus for a presentation and participation in discussions on other presentations in the seminar.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>SumSem</td>
<td>28 h</td>
</tr>
<tr>
<td>theory and practice seminar</td>
<td>2</td>
<td></td>
<td>WinSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
psy230 - Neuromodulation of Cognition

Modulbezeichnung
Neuromodulation of Cognition

Modulcode
psy230

Kreditpunkte
6.0 KP

Workload
180 h

Verwendet in Studiengängen
- Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in
module responsibility
- Jochem Rieger

Teilnahmevoraussetzungen
Enrolment in Master’s programme Neurocognitive Psychology. Neuroscience students can take part on request.

Kompetenzziele
Goals of module:
The aim of this module is to provide students with a theoretical background on how cognitive functions can be altered via neuromodulation.

Competencies:
- **Neuropsychological / neurophysiological knowledge**
- **Interdisciplinary knowledge & thinking**
- **Experimental methods**
- **Ethics / good scientific practice / professional behavior**
- **Critical & analytical thinking**
- **Scientific communication skills**

Modulinhalte
Students will be introduced to the concepts of neuromodulation and the application of theoretical knowledge of neurophysiology to the modulation of cognitive functions.

Part 1: Neuromodulation of cognition (lecture)
- Neurotransmitter systems of cognition
- Neuropharmacological intervention
- Neuroenhancement
- Neurofeedback
- Neurostimulation

Part 2: Neurofeedback (seminar)
- Neurofeedback in control and therapy
- EEG-Neurofeedback
- EMG-Neurofeedback
- Transcranial magnetic stimulation
- Deep brain stimulation
- Patient safety

Literaturempfehlungen

Links
- Unterrichtssprache: English
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: The module will be offered every winter term.
- Aufnahmekapazität Modul: 15
- Modullevel: MM (Mastermodul / Master module)
- Modulart: Wahlpflicht / Elective
- Lern-/Lehrform / Type of program: Part 1: lecture; Part 2: seminar
- Vorkenntnisse / Previous knowledge
- Prüfung
- Prüfungszeiten
- Prüfungsform
The module will be evaluated with an oral presentation in the seminar. Bonus for oral contribution.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td></td>
<td>WinSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
psy241 - Computation in Neuroscience

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computation in Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy241</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Johannes Voßkuhl</td>
</tr>
</tbody>
</table>

Kompetenzziele

Goals of module:
- Students will acquire scientific programming skills as well as specific knowledge of computational methods in neuroscience and cognition. They will learn to judge the appropriateness and complexity of computational problems and solutions.

Competencies:
- Neuropsychological / neurophysiological knowledge
- experimental methods
- statistics & scientific programming
- critical & analytical thinking
- knowledge transfer
- group work

Modulinhalte

Part 1: Introduction to scientific programming I (theoretical-practical seminar)

- Basic data types and structures
- Flow control (conditions, loops, errors)
- Testing and debugging
- Functions

Part 2: Introduction to scientific programming II (theoretical-practical seminar)

- Classes and objects
- Parallel processing
- Frequency analysis methods
- EEG processing

Part 3: Scientific programming I (exercise)

- Implementation of examples from part 1

Part 4: Scientific programming II (exercise)

- Implementation of examples from part 2

Literaturempfehlungen

- Mathworks (2009): MATLAB online documentation

Links

Unterrichtssprache - English

Dauer in Semestern - 2 Semester

Angebotsrhythmus Modul - The module will be offered every winter term.

Aufnahmekapazität Modul - unbegrenzt

Modullevel - MM (Mastermodul / Master module)

Modulart - Pflicht / Mandatory

Lern-/Lehrform / Type of program - Part 1: theoretical-practical seminar; Part 2: theoretical-practical seminar; Part 3: exercise; Part 4: exercise; additional tutorials
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>exam period at the end of the summer term</td>
<td>The participants will have to independently develop and program a solution for a given neuroscientific problem. Both the written code as well as the documentation of the approach taken will be assessed. Bonus for regularly handing in a total of 12 programming exercises.</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>theory and practice seminar</td>
<td>2 semester hours per week for winter and summer term.</td>
<td>4</td>
<td>SunSem and WinSem</td>
<td>56 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>1 semester hour per week for winter and summer term.</td>
<td>2</td>
<td>SunSem and WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Tutorial</td>
<td>2 semester hours per week in winter and summer term.</td>
<td></td>
<td>SunSem and WinSem</td>
<td>0 h</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | | | | 84 h |
psy250 - Internship

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Internship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy250</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Cornelia Kranczioch-Debener</td>
</tr>
<tr>
<td></td>
<td>• Hans Colonius</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
</tbody>
</table>

Kompetenzziele

Goals of module:
The goal of the internship is to provide students with the opportunity to participate in the daily work of professional psychologists in their job. Students will be able to make informed, career-specific decisions.

Competencies:
- experimental methods
- ethics / good scientific practice / professional behavior
- knowledge transfer
- project & time management

Modulinhalte
The students will work in a field of psychology and get to know the daily work routines of a psychologist.

Literaturrempfehlungen

Links
http://www.uni-oldenburg.de/en/psychology/study-programme/master/internships/
http://www.uni-oldenburg.de/en/psychology/study-programme/master/documents/

Unterrichtsprachen
English, German

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
The internship lasts 450 hours (12 weeks). It can be performed at 2 different institutions with a minimum duration of 150 hours (4 weeks) for each part. Your supervisor must be a psychologist.

Please note that details are regulated in the exam regulations. A blank internship certificate can be found on the programme website.

Modullevel
MM (Mastermodul / Master module)

Modulart
Pflicht / Mandatory

Lern-/Lehrform / Type of program
internship at (external) institution

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>individual</td>
<td>The students have to hand in a written report (5-8 pages) about their internship and show a certificate from the institution at which they performed the internship. The internship is evaluated as pass/fail.</td>
</tr>
</tbody>
</table>
psy260 - Practical project

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Practical project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy260</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Verwendet in Studiengängen
- Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in
- module responsibility
 - Hans Colonius
 - Jochem Rieger
 - Christoph Siegfried Herrmann
 - Stefan Debener
 - Jalenur Ozyurt

Module counseling
- Riklef Weerda

Teilnahmevoraussetzungen
Enrolment in Master’s programme Neurocognitive Psychology.
Priority is given to students with experience in methods used in the respective lab or students who have taken the respective teaching modules.

Kompetenzziele
Goals of module:
Students will learn to plan, perform and analyse a study in the field of neurocognition. They will need to apply statistical knowledge and programming competencies to the data acquisition and analysis of data. Results will be related to the current neurocognitive literature and presented in a student poster symposium at the end of the module. Additionally, students should gain experience as participants in studies.

Competencies:
- ++ experimental methods
- + statistics & scientific programming
- ++ data presentation & discussion
- + independent research
- + scientific literature
- + ethics / good scientific practice / professional behavior
- + scientific communication skills
- + knowledge transfer
- + group work
- ++ project & time management

Modulinhalte
- The students develop an empirical investigation, carry it out and analyse the results.
- The students present and discuss their project in respect to recent literature in regular meetings and in a poster symposium.
- Students can develop an experimental design for a follow-up study which could potentially be the topic of their Master’s thesis.
- As part of the practical project, students should participate in studies of other practical projects!

Literaturempfehlungen

Links
http://www.uni-oldenburg.de/en/psychology/study-programme/master/documents/

Unterrichtssprache
English

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
The module will be offered every winter term.

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Topics for projects will be presented in a colloquium at the end of the summer term.

Students can choose to perform the practical work in either of the research groups of the Department of Psychology. External projects are possible upon approval (information and approval form can be found on the programme website).

Modullevel
MM (Mastermodul / Master module)

Modulart
Pflicht / Mandatory

Lern-/Lehrform / Type of program
practical work and regular seminar meetings in the group where the project is performed

Vorkenntnisse / Previous knowledge
PLEASE NOTE: Many projects require knowledge of either EEG, IMRI, TBS, or HCI analysis! We strongly recommend to take either psy170: Neurophysiology, psy270: Functional Neuroimaging, psy280: Transcranial Brain Stimulation, or psy220 Human Computer Interaction prior to the practical project.
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>usually end of April</td>
<td>Poster presentation in a student symposium (30% of the grade) and daily project work (70% of the grade).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>Please select the group in which you perform your practical project.</td>
<td>2</td>
<td>WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>2</td>
<td>WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
psy270 - Functional MRI Data Analysis

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Functional MRI Data Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy270</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Carsten Gießing</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
</tbody>
</table>

Kompetenzziele

Goals of module:

- Students will learn the basics about planning and performing a neuroimaging study. They will focus on the statistical and methodological background of functional neuroimaging data analysis and analyse a sample functional MRI data set.

Competencies:

++ experimental methods
++ statistics & scientific programming
+ data presentation & discussion
++ group work

Modulinhalte

Part 1: Functional MRI data analysis (lecture)

Part 2: Planning, performance and analysis of functional neuroimaging studies using MATLAB-based software (seminar)

Part 3: Hands-on fMRI data analysis with SPM (practical course)

Literatuerempfehlungen

Links

- Unterrichtssprache: English
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: The module will be offered every summer term.
- Aufnahmekapazität Modul: 20 (The remaining places are reserved for Biology and Neuroscience students.)
- Hinweise: Since the module is primarily offered for the Master's programme Biology it has to be offered as a blocked course. Please contact us if you are interested in the module but have problems with interfering other courses.

PLEASE NOTE:

We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!

Modullevel: MM (Mastermodul / Master module)

Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program: Part 1: lecture; Part 2: seminar; Part 3: practical course

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>end of summer term</td>
<td>Oral or written examination (e.g. presentations, creating study material for other participants, tandem learning or oral contributions)</td>
</tr>
<tr>
<td>Lehrveranstaltungform</td>
<td>Kommentar</td>
<td>SWS</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SumSem</td>
</tr>
</tbody>
</table>

29 / 35
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>SumSem</td>
<td>14 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4</td>
<td>SumSem</td>
<td>56 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>98 h</td>
</tr>
</tbody>
</table>
psy275 - Essentials of fMRI Data Analysis with SPM and FSL

Modulbezeichnung
Essentials of fMRI Data Analysis with SPM and FSL

Modulcode
psy275

Kreditpunkte
6.0 KP

Workload
180 h
(Attendance: 56 h. (4 SWS), reading and practising: 124 h., total: 180 h.)

Verwendet in Studiengängen
• Master Neurocognitive Psychology > Mastermodule

Ansprechpartner/-in
module responsibility
- Riklef Weerda
- Peter Sörös

Teilnahmevoraussetzungen
Enrolment in Master’s programme Neurocognitive Psychology, 3rd semester or higher.

Kompetenzziele
+ Neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ experimental methods
++ statistics & scientific programming
+ data presentation & discussion
+ independent research
+ scientific literature
+ ethics / good scientific practice / professional behaviour
+ critical & analytical thinking
+ group work

This module offers a concise introduction to the basic principles of functional magnetic resonance imaging (fMRI). Students will gain essential knowledge about experimental design, data collection and analysis. Special emphasis will be laid on the statistical background of fMRI data analysis and a hands-on introduction to SPM and FSL, two widely-used and free software packages for fMRI data analysis and results visualisation.

Modulinhalte
1. Methodological basics of functional magnetic resonance imaging (fMRI)
2. Basic principles of fMRI experimental design and data collection
3. Statistical background of fMRI data analysis
4. Hands-on training in fMRI data analysis and results visualisation with SPM and FSL

Literaturempfehlungen

Links

Unterrichtssprache
English

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
The module will be offered in the winter term, blocked in the first half (seven weeks).

Aufnahmekapazität Modul
40

Modullevel
MM (Mastermodul / Master module)

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Part 1: 1 seminar (1 SWS)
Part 2: 1 supervised exercise (3 SWS)

Vorkenntnisse / Previous knowledge

Prüfung
Prüfungszeiten
Prüfungsform
Gesamtmodul
end of winter term
written exam (multiple choice)

Lehrveranstaltungstform

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>1</td>
<td>WinSem</td>
<td>14 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>3</td>
<td>WinSem</td>
<td>42 h</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt
56 h
psy280 - Transcranial Brain Stimulation

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Transcranial Brain Stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy280</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Christoph Siegfried Herrmann</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Enrolment in Master’s programme Neurocognitive Psychology.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Goals of module: Students will gain theoretical and practical knowledge on various non-invasive brain stimulation techniques.</td>
</tr>
<tr>
<td></td>
<td>Competencies: ++ Neuropsychological / neurophysiological knowledge + experimental methods + statistics & scientific programming + scientific literature + ethics / good scientific practice / professional behaviour</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>In this module, we will introduce the theoretical concepts, neurophysiological underpinnings and neurocognitive as well as clinical applications of various non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS). A focus will be tACS, because it is especially suited to modulate brain oscillations which have been shown to correlate with cognitive processes.</td>
</tr>
</tbody>
</table>

Part 1: Introduction to transcranial brain stimulation (lecture)

- Historical overview of brain stimulation
- Different techniques (TMS, tDCS, tACS, tRNS)
- Physiological mechanisms (entrainment, after-effects etc.)
- The use of transcranial brain stimulation in cognitive neuroscience
- Experimental parameters (intensity, electrode montage, etc.)
- Pros and cons of TMS vs. IACS
- Technical aspects (artifact correction, modeling current flow, etc.)
- Safety issues
- Ethical considerations of brain stimulation

Part 2: Effects of IACS on physiology and cognition (seminar)

- Physiology of IACS (on-line and after-effects)
- Modulating cognitive functions (e.g. memory, attention, and perception)
- Clinical applications of IACS
- Hands-on experience in the lab

Literatureempfehlungen

Links

- Unterrichtssprache: English
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: The module will be offered every summer term.
- Aufnahmekapazität Modul: 10
- Hinweise: We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master’s thesis!
- Modullevel: MM (Mastermodul / Master module)
- Modulart: Wahlpflicht / Elective
- Lern-/Lehrform / Type of program: Part 1: lecture; Part 2: seminar
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>during summer term</td>
<td>Oral presentation in the seminar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SumSem</td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>SumSem</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
Abschlussmodul

mam - Masterabschlussmodul

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Masterabschlussmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mam</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td></td>
<td>(attendance in the lab meetings: 28h (2 SWS); thesis work: 872 hours)</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology > Abschlussmodul</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td></td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
- Enrolment in Master's programme Neurocognitive Psychology.
- Completion of at least 60 credit points in other modules.
- Assignment of a topic by first thesis supervisor and official application with the examination office.

Kompetenzziele
Goals of module:
- Students will demonstrate that they are able to perform a (neuro)psychological experiment according to scientific standards. In addition, they will demonstrate that they are acquainted with the necessary methods and can present their results orally and in written form.

Competencies:
- ++ experimental methods
- + statistics & scientific programming
- + data presentation & discussion
- ++ independent research
- + scientific literature
- ++ scientific English / writing
- + ethics / good scientific practice / professional behavior
- + critical & analytical thinking
- + scientific communication skills
- + knowledge transfer
- ++ project & time management

Modulinhalte
- **Part 1: Master's thesis**
 - The students work on a given topic in cognitive neuroscience using literature research and the appropriate experimental methods.

- **Part 2: Master's colloquium**
 - The preparation of the thesis is accompanied by regular participation in the lab meetings of the groups in which the thesis is performed. Students present their study design at the beginning of their thesis preparation and their results towards the end. In addition, they listen to the presentations of the other lab members and students in the group.

Literatureempfehlungen
- Rules for external Master's theses are explained here: http://www.uni-oldenburg.de/en/psychology/study-programme/master/documents/

Unterrichtssprache
- English

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- If you want to do a Master's thesis outside the Department of Psychology, please follow the rules stated on the program website.

Modullevel
- Abschlussmodul (Abschlussmodul / Conclude)

Modultyp
- Pflicht / Mandatory

Lern-/Lehrform / Type of program
- individual thesis preparation with supervision

Vorkenntnisse / Previous knowledge
- contact your supervisor for details

Prüfung
- **Gesamtmodul**
 - individual appointments
 - The written thesis will be evaluated by the supervisor and an additional reviewer (90%). The oral presentation and defence of the thesis results will be evaluated (10%).