Modules for Computing Science

Kernmodule

inf900 - Group Project

Module name	Group Project
Module code | inf900
ECTS credit points | 24.0 KP
Workload | 720 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Kernmodule
- Master Informatik > Kernmodule
- Master Wirtschaftsinformatik > Kernmodule

Contact person
module responsibility
- Michael Sonnenschein
- Andreas Hein
- Jorge Marx Gomez

Module counciling
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

The students get familiar with different software development aspects in a team. Apart from software engineering knowledge and skills they develop key competences like project management, teamwork, problem solving competence and conflict management.

Additionally, students develop special knowledge, skills and competences from the project group topic.

Professional competence
The students:

- Characterise and apply computer science basics (algorithms, data structures, programming, basics of practical, technical and theoretical computer science)
- Define und describe essential mathematical, logical and physical basics of computer science
- Define and illustrate the core disciplines of computer science (theoretical, practical and technical computer science)

Methodological competence
The students:

- Examine problems, use formal methods to phrase and analyze them appropriately
- Evaluate problems by the use of technical and scientific literature
- Reflect on a scientific topic and write a scientific seminar paper under guidance and present their findings

Social competence
The students:

- Integrate criticism into their own actions
- Respect team decisions
- Communicate with users and experts convincingly

Self-competence
The students:

- Take on project management tasks
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently
- Recognise their abilities and extend them purposefully
- Reflect their self-perception and actions with regard to professional, methodological and social aspects
- Develop and reflect self-developed hypotheses to theories independently
- Work in their field independently

Module contents
Cooperative development of a large-scale computer science project. This project generally includes the (further)
development of a hard or software system.

<table>
<thead>
<tr>
<th>Recommended reading</th>
<th>according to the assigned task</th>
</tr>
</thead>
</table>

Links
- **Languages of instruction**: German, English
- **Duration (semesters)**: 2 semester
- **Module frequency**: halbjährlich
- **Module capacity**: unlimited
- **Modullevel**: AS (Akzentsetzung)
- **Modulart**: Pflicht

Lern-/Lehrform / Type of program

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Active involvement, presentation, final report, project assessment</td>
</tr>
</tbody>
</table>
Mastermodule
inf100 - Human Computer Interaction

Module name | Human Computer Interaction
Module code | inf100
ECTS credit points | 6.0 KP
Workload | 180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Bereichswahlmodule

Contact person
- module responsibility
 - Susanne Boll-Westermann
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competence
The students:
- Name the human-computer interaction core principles
- Characterise the basic elements of the human-centered design of interactive systems

Methodological competence
The students:
- Comprehend context of use and user requirements of human-machine interfaces
- Design, develop and evaluate human-machine interfaces
- Conduct experiments with their prototypes

Social competence
The students:
- Implement human-computer interfaces in practical hands-on projects in teams
- Evaluate human-machine interfaces with potential users
- Develop and present solutions for Human-Computer Interaction related problems
- Integrate technical and factual comments into own results

Module contents
The module introduces the field of human-computer interfaces and their historical context. Moreover, it shows motivating examples of human-computer interaction. The module covers the core principles of human-computer interaction. In detail, the module deals with the design concepts of interactive systems: context of use, requirements and task analysis, human perception capabilities, design process, usability, prototyping and evaluation. During the practical project a concrete human-computer interface will be designed, developed and evaluated according to this concepts.

Recommended reading
- Markus Dahm, Grundlagen der Mensch Computer Interaktion, Pearson, 2006
- Literature in the reserve shelf in the university bibliography. Link list in Stud.IP.

Links
- medien.informatik.uni-oldenburg.de/lehre

Language of instruction | German
Duration (semesters) | 1 semester
Module frequency | once a year
Module capacity | unlimited
Modullevel | AS (Akzentsetzung / Accentuation)
Modulart | Pflicht o. Wahlpflicht / compulsory or optional
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>VL + Ü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Basic programming skills</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>The completed practical projects will be presented on a single project day, which will take place at the end of the lecture period. The oral exam takes place within the last two weeks of the lecture period. If necessary, re-examinations will take place at the end of the term. Find out more about the schedule on the websites of the department and in Stud.IP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>28 h</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Practical</td>
<td>2</td>
<td>28 h</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

inf105 - Fault Tolerance in Distributed Systems

Module name
Fault Tolerance in Distributed Systems

Module code
inf105

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person
module responsibility
- Michael Sonnenschein
- Andreas Hein
- Oliver Theel
- Die im Modul Lehrenden

authorized examiners
- Die im Modul Lehrenden
- Die Modulverantwortlichen

Module counceling
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module provides knowledge of fault-tolerant distributed systems. The terminology, structure, conception, core challenges and related implementation concepts will be covered in detail.

Professional competence
The students:
- Assess what a fault-tolerant distributed system is and develop awareness of its capabilities
- Name and discuss common implementations of fault-tolerant distributed systems

Methodological competence
The students:
- Reflect the implementation challenges of a distributed system
- Are able to adapt and evolve implementation concepts of fault-tolerant distributed systems in new contexts

Social competence
The students:
- Solve problems in small teams
- Present their solutions to the members of the tutorial
- Discuss their different solutions with members of the tutorial

Self-competence
The students:
- Accept criticism
- Question their initially applied methods for problem solving
- Question their initial solutions in the light of newly learned methods

Module contents
1) Fault, Error, Failure
2) Failure semantics, Fault tolerance
3) Byzantine agreement protocols
4) Stable storage
5) Fail-stop processors
6) Atomic commit protocols
7) Classification of replication control schemes
- pessimistic vs. optimistic
- semantic vs. syntactic
- static vs. dynamic
8) Consistency notions
9) Quality criteria
10) Survey of replication control schemes
11) Design of replication control schemes
12) Unifying frameworks
13) Replication in practice

Recommended reading

Links
- Language of instruction: German
- Duration (semesters): 1 semester
- Module frequency: im 2-Jahres-Zyklus
- Module capacity: unlimited
- Module level: MM (Mastermodul)
- Module type: Wahlpflicht
- Learning / Teaching format / Type of program: 1VL+1SE or 1VL+1Ue (4S WS)

Vorkenntnisse / Previous knowledge

Examination
- Final exam of module: End of lecture period
- (oral exam or written exam) and (seminar paper or nil)

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>WinSem</td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>seminar or exercise</td>
<td>2</td>
<td>WinSem</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>

Total attendance time of module

56 h
inf108 - Requirements Engineering and Management

<table>
<thead>
<tr>
<th>Module name</th>
<th>Requirements Engineering and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf108</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Bereichswahlmodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>Andreas Winter</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
</tbody>
</table>

The objective of the module "Requirements Engineering and Management" is to convey the core concepts and technology of the requirements engineering and of the requirements management. In the second half of the semester these methods and techniques will be carried out practically to develop an exemplary requirements definition.

Professional competence
The students:

- Integrate the process of requirements engineering in the software engineering process
- Name the methods and tools of requirements engineering and management
- Select methods and tools from requirements engineering and management to solve given problems appropriately
- Illustrate the key tasks of the requirements engineering and management
- Name the essential concepts to develop and to structure ideas
- Discuss the methods of determination requirements and develop validation concepts
- Differentiate the software development core activities in greater detail

Methodological competence
The students:

- Apply the methods of determination, documentation, validation and confirmation of requirements and
- Create a comprehensive requirement document in group work

Social competence
The students:

- Communicate with all stakeholders dealing with software development
- Design project visions in groups
- Collect requirements in interviews
- Design requirements for software systems collaboratively

Self-competence
The students:

- Reflect their problem-solving behaviour by applying requirements engineering and management capabilities

Module contents
The module deals with requirements analysis core concepts as well as methods and techniques of requirements engineering and management. Topics of this module are:

- The necessity of requirements engineering and management
- The requirements engineering process in the software development process
- Requirements engineering process (participants, documents, activities)
- Understanding the application domains (vision development, system environment documentation, domain model development, use case identification)
- Requirements collection (functional and non-functional requirements, requirements collection, requirements documentation, requirements validation, requirements needs)
- Requirements management

Recommended reading

- Chris Rupp: Requirements-Engineering und -Management: Professionelle, iterative
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimitet</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul)</td>
</tr>
<tr>
<td>Module type</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>

Learning and Teaching Form / Type of Program

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio: report and short oral exam</td>
</tr>
</tbody>
</table>

Previous Knowledge / Examination

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>28 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td>2</td>
<td>28 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Attendance Time of Module

<table>
<thead>
<tr>
<th></th>
<th>56 h</th>
</tr>
</thead>
</table>
inf109 - Information Systems III

Module name: Information Systems III
Module code: inf109
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Bereichswahlmodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Marco Grawunder
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module:

Professional competence
The students:
- Describe concepts, languages and architectures of database systems
- Discuss state-of-the-art database research topics
- Analyse information processing tasks and implement solutions appropriately

Methodological competence
The students:
- Propose concrete processing requirements for special application classes
- Assess the consequences of techniques and approaches
- Perform supervised research in the field of information systems
- Analyse and reflect complex information system requirements
- Realize information demands and accordingly gather aim-oriented information

Module contents
This module is a continuation of the content of information systems I and of information systems II. It deepens and extends the contents of the preceding modules and focuses mainly on current research questions. A special focus lies on concept of distributed data management.

Recommended reading
- Özsu, M. Tamer; Valduriez, Patrick, Principles of distributed database systems
- Rahm/Saake/Sattler: Verteiltes und Paralleles Datenmanagement, Springer
- Paper from SIGMOD, VLDB or ICDE

Links
http://www.is.informatik.uni-oldenburg.de/lehre/lehre.html

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: jährlich
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht

Vorkenntnisse / Previous knowledge

Examination examination periods Type of examination
Final exam of module At the end of the lecture period Written exam, oral exam or term paper

Course type Comment SWS Offer rhythm Workload attendance
Lecture 2 28 h
Exercises 2 28 h
Total attendance time of module 56 h
inf111 - Advanced Database Practical

Module name: Advanced Database Practical
Module code: inf111
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Bereichswahlmodule

Contact person:
- Module responsibility:
 - Michael Sonnenschein
 - Marco Grawunder
- Module counseling:
 - Die im Modul Lehrenden

Prerequisites:
Skills to be acquired in this module:
Objective of the module/skills:
The module enhances the previous knowledge of databases and information systems. In the context of a professional database system the students realize, implement, install and optimize the system. Theoretical and mathematical approaches are additional contents. Additionally the course provides the capability both to describe the differences between NoSQL Databases and (Object-)Relational Databases and how to use them.

Professional competence
The students:
- Name realisation techniques, implementations und programming of database systems
- Program and implement database oriented system routines
- Administer a professional database system
- Identify database system performance problems and solve them appropriately

Methodological competence
The students:
- Make optimisation decisions during the modelling phase
- Construct optimisation strategies mathematically

Social competence
The students:
- Develop appropriate implementations for given problems in a team

Self-competence
The students:
- Acknowledge the limits of their ability to cope with pressure during the implementation of database specific solutions

Module contents:
Content of the Module:
The module is a practical course. It is a continuation of the modules Information Systems I and Information Systems II. This module especially deals with the technical and theoretical concepts of database systems. Practical database implementation approaches and optimisation concepts are additional content of the module.

In detail the module provides: low-level database management programming, aspects of catalogue systems implementation, optimisation strategies based on different parallelisation and partitioning strategies, query concepts and modification.

Recommended reading:
Suggested reading:
- Held Andrea (2007), Oracle 10g Addison-Wesley.
- Oracle 10g, Das Programmierhandbuch, Galileo Computing
- Oracle Database 11g, DBA-Handbuch, Oracle Press-Hanser Verlag
- NoSQL (2011) Hanser Verlag
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>1 PR</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
</tr>
<tr>
<td>Type of examination</td>
<td>hands-on exercises and oral exam</td>
</tr>
</tbody>
</table>
inf112 - Modern Programming Technologies Practical

<table>
<thead>
<tr>
<th>Module name</th>
<th>Modern Programming Technologies Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf112</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>• Master Wirtschaftsinformatik > Bereichswahlmodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Dietrich Boles</td>
</tr>
<tr>
<td></td>
<td>Module counselling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The objective of the practical course is to provide the students with state-of-the-art programming techniques. After the course, the students are able to use these techniques during the implementation and development of applications.</td>
</tr>
<tr>
<td></td>
<td>Professional competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Name state-of-the-art programming techniques</td>
</tr>
<tr>
<td></td>
<td>Methodological competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Search for solutions on the internet</td>
</tr>
<tr>
<td></td>
<td>Social competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Discuss own and someone else’s solutions</td>
</tr>
<tr>
<td></td>
<td>Self-competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Reflect their problem-solving behaviour and take up new solutions, e.g. from the internet</td>
</tr>
<tr>
<td>Module contents</td>
<td>The practical course enhances the students' programming skills. It focuses on state-of-the-art programming techniques. Among others, these are .NET-Framework, OSGi, Java EE, Java ME, iOS Application development, Android Application development or Social Network API.</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>Online-Documentation of the technologies and systems</td>
</tr>
<tr>
<td>Links</td>
<td>http://www-is.informatik.uni-oldenburg.de/~dibo/teaching/programmierpraktikum/</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht/Wahlpflicht *</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
</tr>
<tr>
<td></td>
<td>Exercises an oral exam, Programming tasks during the semester; short oral exam</td>
</tr>
</tbody>
</table>
inf113 - Operating Systems II

Module name: Operating Systems II
Module code: inf113
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Bereichswahlmodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Oliver Theel
- authorized examiners
 - Die Modulverantwortlichen
 - Die im Modul Lehrenden
- Module counseling
 - Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:

Module contents:

Recommended reading:

Links:

Language of instruction: German
Duration (semesters): 1 semester
Module frequency:
Module capacity: Unlimited
Modullevel: ---
Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program:

Vorkenntnisse / Previous knowledge:

Examination examination periods Type of examination

Final exam of module M

Course type Comment SWS Offer rhythm Workload attendance
Lecture 2 28 h
Exercises 2 28 h

Total attendance time of module: 56 h
inf131 - Advanced Topics in Human Computer Interaction

Module name: Advanced Topics in Human Computer Interaction
Module code: inf131
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Informatik > Mastermodule

Contact person:
- Module responsibility: Susanne Boll-Westermann
- Authorized examiners: Die im Modul Lehrenden

Prerequisites:
This course aims to provide a sample of some of the most recent and significant advances in this exciting area. Topics may include: situational awareness, designing for attention, ambient/peripheral interaction, computer support cooperative work and social computing (CSCW), ubiquitous and context-aware computing, haptic and gestural interaction, audio interaction, gaze-based interaction, biometric interfaces, and embedded, physical and tangible computing, mobile and wearable interfaces.

This course is explicitly not focused on the methods used in HCI practice (i.e., user-centered design cycle), but rather focuses on (recent) research.

Course prerequisite: Mensch-Maschine-Interaktion (Human Computer Interaction)

Professional competences:
The students:
- Demonstrate a systematic understanding of knowledge and critical awareness of a selection of the recent research advances in the area of HCI
- Evaluate and critique recent developments in the field of HCI on scientific and technological grounds
- Develop ability to conceptualize, design, implement, and evaluate user-centered systems and techniques.
- Plan and implement exploratory projects directed at envisioning and prototyping novel interactive artifacts

Methodological competences:
The students:
- Analyze, review and critique research papers
- Carry out original research from start to finish
- Summarize and present research findings
- Work in a team to produce and evaluate prototypes of novel interactive artifact

Social competences:
The students:
- Work collaboratively in groups to analyze and review research papers
- Summarize and present research findings to rest of class
- Discuss how HCI concepts and methods can be applied in analysis, design, and evaluation of interactive technologies.
- Discuss social and ethical implications of interactive technologies

Self-competences:
The students:
- Be comfortable tackling original research questions
- Aptitude in conceptualizing and running both qualitative and quantitative HCI experiments
- Ability to summarize, analyze, and critique published (peer-review) research papers

Module contents:
HCI is a fast growing field, where scientific research in this area crosses multiple disciplines. The body of theoretical and empirical knowledge that can inform the design of effective systems is rapidly developing, which underscores the importance of current research in the field.

This course aims to provide a sample of some of the most recent and significant advances in this exciting area. Topics may include: situational awareness, designing for attention, ambient/peripheral interaction, computer support cooperative work and social computing (CSCW), ubiquitous and context-aware computing, haptic and gestural interaction, audio interaction, gaze-based interaction, biometric interfaces, and embedded, physical and tangible computing, mobile and wearable interfaces.

Structure of the Module:
The course will consist of lectures and lab sessions. Lab sessions will cover assignments (writing paper reviews, presentations, and peer assessment). In addition to assignments and a final exam, a small part of the course includes a mini group-based HCI project.

Lectures: 2 hours per week
Lab: 2 hours per week
This lectures will be held in English. All assignment submissions and exams will be in English.

The primary audience for this class are Master students of Computer Science following the Human Computer Interaction track.

Recommended reading
- Design of Everyday Things, Chapters 1 to 7

Links

Language of instruction English

Duration (semesters) 1 semester

Module frequency

Module capacity 24

Modullevel AS (Akzentsetzung / Accentuation)

Modulart Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program V+P

Vorkenntnisse / Previous knowledge Interaktive Systeme

Examination examination periods Project and oral exams

Final exam of module At the end of the lecture period

- Missing the exam
 - If you cannot attend the exam with valid reasons (medical reason, exam schedule conflicts), you need to inform us before the exam, and submit a scanned copy of the evidence (medical certificate, course registration, boarding passes) within 5 days after the exam.
 - If the reason for missing the exam is valid, you will do your first try of the exam for the parts that you missed on the same date as the second chance exam.
 - If the reason is not valid, you will not get any score from that exam. If your overall score passed the course, you will not have a chance to take the exam again.

Grading: Your grade will be calculated as follows:

- **Scored Items %**
 - Final 40
 - Assignments A01–03 30
 - Mini HCI research project 20

Course type Comment SWS Offer rhythm Workload attendance

| Lecture | 2 | WinSem | 28 h |
| Practical | 2 | WinSem | 28 h |

Total attendance time of module 56 h
inf170 - Special Topics in 'Information Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Information Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf170</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Marco Grawunder</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td></td>
<td>Module counceling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

According to the assigned course

Recommended reading

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulelevel: AS (Akzentsetzung)

Modulart: Wahlpflicht

Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR (4 SWS)

Vorkenntnisse / Previous knowledge

Examination

examination periods

Type of examination
| Final exam of module | At the end of the lecture period | Portfolio or presentation or oral exam |
inf171 - Special Topics in ‘Information Systems’ I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in ‘Information Systems’ I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf171</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>- Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Marco Grawunder</td>
</tr>
<tr>
<td></td>
<td>- Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

According to the assigned course

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination

examination periods

Type of examination

18 / 268
| Final exam of module | At the end of the lecture period | Portfolio or presentation or oral exam |
inf172 - Special Topics in 'Information Systems' I

Module name: Special Topics in 'Information Systems' I
Module code: inf172
ECTS credit points: 3.0 KP
Workload: 90 h
Used in degree programmes: Master Informatik > Mastermodule

Contact person:
module responsibility
- Michael Sonnenschein
- Marco Grawunder
- Lehrende der Informatik

Prerequisites

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents: According to the assigned course
Recommended reading: As announced in course

Links
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Module level: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: V or S
Vorkenntnisse / Previous knowledge

Examination examination periods Type of examination
Final exam of module At the end of the lecture period Presentation or oral exam
inf173 - Special Topics in 'Information Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Information Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf173</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Marco Grawunder</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
According to the assigned course

Recommended reading
As announced in course

Links

Language of instruction German
Duration (semesters) 1 semester
Module frequency unregelmäßig
Module capacity unlimited
Modullevel MM (Mastermodul)
Modulart Wahlpflicht
Lern-/Lehrform / Type of program 1V or 1S

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf174 - Special Topics in 'Media Informatics and Multimedia Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Media Informatics and Multimedia Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf174</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Informatik > Mastermodule

Contact person
- Module responsibility
 - Susanne Boll-Westermann
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- Support team process by their abilities

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
According to the assigned course

Recommended reading
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the lecture period</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf175 - Special Topics in 'Media Informatics and Multimedia Systems' II

Module name Special Topics in 'Media Informatics and Multimedia Systems' II
Module code inf175
ECTS credit points 6.0 KP
Workload 180 h
Used in degree programmes
 - Master Engineering of Socio-Technical Systems > Human-Computer Interaction
 - Master Informatik > Mastermodule

Contact person
 module responsibility
 - Susanne Boll-Westermann
 Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
 - Define and contrast a computer science part, in which they are specialised, in detail or evaluate
computer science in general
 - Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 - Identify, structure and solve problems/tasks, also in new or developing subject areas
 - Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 - Are aware of the current limits and contribute to the development of computer science research and
technology
 - Discuss and evaluate recent computer science developments

Methodological competences
The students:
 - Evaluate and apply tools, technology and methods sophisticatedly
 - Combine new and original approaches and methods creatively
 - Evaluate problems/tasks, including new or developing subject areas of their discipline and apply
computer science methods for solutions and research

Social competences
The students:
 - Support team process by their abilities

Self-competences
The students:
 - Pursue the overall and special computer science development critically
 - Implement innovative professional activities effectively and independently

Module contents
According to the assigned course

Recommended reading
As announced in course

Links

Language of instruction German
Duration (semesters) 1 semester
Module frequency unregelmäßig
Module capacity unlimited
Modullevel AS (Akzentsetzung)
Modulart Wahlpflicht
Lern-/Lehrform / Type of program 2 courses out of V, S, Ü, P, PR
Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the lecture period</td>
<td>Exercises or presentation Semesterbegleitende or</td>
</tr>
</tbody>
</table>

oral exam
inf176 - Special Topics in 'Media Informatics and Multimedia Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Media Informatics and Multimedia Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf176</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person
- module responsibility
 - Michael Sonnenschein
 - Susanne Boll-Westermann
 - Die im Modul Lehrenden
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences

The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:
- Communicate with users and experts convincingly

Self-competences

The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
According to the assigned course

Recommended reading
As announced in course

Links

- Language of instruction: German
- Duration (semesters): 1 semester
- Module frequency: unregelmäßig
- Module capacity: unlimited
- Modullevel: AS (Akzentsetzung)
- Modulart: Wahlpflicht
- Lern-/Lehrform / Type of program: S or V

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf177 - Special Topics in 'Media Informatics and Multimedia Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Media Informatics and Multimedia Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf177</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td>• Michael Sonnenschein</td>
<td></td>
</tr>
<tr>
<td>• Susanne Boll-Westermann</td>
<td></td>
</tr>
<tr>
<td>• Lehrende der Informatik</td>
<td></td>
</tr>
<tr>
<td>Module counceling</td>
<td></td>
</tr>
<tr>
<td>• Die im Modul Lehrenden</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

As in the description of the assigned course

Recommended reading

As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf178 - Special Topics in 'Software Engineering' I

Module name: Special Topics in 'Software Engineering' I
Module code: inf178
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Andreas Winter
 - Die im Modul Lehrenden
- Module counseling
 - Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences:
The students:
- Support team process by their abilities

Self-competences:
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents:
See the assigned course description

Recommended reading:
As announced in course

Links:

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program:
- 2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge:

Examination examination periods Type of examination
Final exam of module At the end of the lecture period Portfolio or presentation or oral exam
Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

- Support team process by their abilities

Self-competences

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See the assigned course description

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination

examination periods

At the end of the lecture period

Type of examination

Portfolio or presentation or oral exam
inf180 - Current Topics in 'Software Engineering' I

Module name
Current Topics in 'Software Engineering' I

Module code
inf180

ECTS credit points
3.0 KP

Workload
90 h

Used in degree programmes
• Master Informatik > Mastermodule

Contact person
module responsibility
 • Michael Sonnenschein
 • Andreas Winter

Module counseling
 • Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

• Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
• Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
• Identify, structure and solve problems/tasks, also in new or developing subject areas
• Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
• Are aware of the current limits and contribute to the development of computer science research and technology
• Discuss and evaluate recent computer science developments

Methodological competences
The students:

• Examine tasks with technical and research literature, write an academic article and present their solutions academically
• Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
• schedule time processes and resources

Social competences
The students:

• Communicate with users and experts convincingly

Self-competences
The students:

• Pursue the overall and special computer science development critically
• Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
S or V

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf181 - Current Topics in 'Software Engineering' I

Module name: Current Topics in 'Software Engineering' I
Module code: inf181
ECTS credit points: 3.0 KP
Workload: 90 h
Used in degree programmes: Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Andreas Winter
 - Die im Modul Lehrenden

Module counseling:
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modulelevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: S or V

Vorkenntnisse / Previous knowledge

34 / 268
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture periode</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf182 - Special Topics in 'System Software and Distributed Systems' I

Module name
Special Topics in 'System Software and Distributed Systems' I

Module code
inf182

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Master Informatik > Mastermodule

Contact person
- module responsibility
 - Michael Sonnenschein
 - Oliver Theel
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

According to the assigned course, e.g. „Verteilte Systeme“, „Realzeitbetriebssysteme“ or „Drahtlose Rechnernetze“

Recommended reading

As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf183 - Special Topics in 'System Software and Distributed Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'System Software and Distributed Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf183</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
</tbody>
</table>

- Michael Sonnenschein
- Oliver Theel
- Die im Modul Lehrenden

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Skills to be acquired in this module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional competences</td>
</tr>
<tr>
<td>The students:</td>
</tr>
<tr>
<td>- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td>- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td>- Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td>- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td>- Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td>- Discuss and evaluate recent computer science developments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methodological competences</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students:</td>
</tr>
<tr>
<td>- Evaluate and apply tools, technology and methods sophisticatedly</td>
</tr>
<tr>
<td>- Combine new and original approaches and methods creatively</td>
</tr>
<tr>
<td>- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Social competences</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students:</td>
</tr>
<tr>
<td>- Support team process by their abilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Self-competences</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students:</td>
</tr>
<tr>
<td>- Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td>- Implement innovative professional activities effectively and independently</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>According to the assigned course, e.g. „Verteilte Systeme“, „Realzeitbetriebssysteme“ or „Drahtlose Rechnernetze“</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>As announced in course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Modullevel</td>
</tr>
<tr>
<td>Modulart</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
</tr>
<tr>
<td>V (2 SWS), Ü (2 SWS)</td>
</tr>
<tr>
<td>1 V 1 Ü or 1 V 1 S or 1 V 1 P or 1 S 1 P</td>
</tr>
</tbody>
</table>

<p>| Vorkenntnisse / Previous knowledge |</p>
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf184 - Current Topics in 'System Software and Distributed Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'System Software and Distributed Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf184</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Oliver Theel</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td></td>
<td>Module counceling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Examination periods</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
</tbody>
</table>

inf185 - Current Topics in 'System Software and Distributed Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'System Software and Distributed Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf185</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>- Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>- Oliver Theel</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>- Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Professional competences</td>
<td></td>
</tr>
<tr>
<td>The students</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>- Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>- Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>- Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Methodological competences</td>
<td></td>
</tr>
<tr>
<td>The students</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>- schedule time processes and resources</td>
</tr>
<tr>
<td>Social competences</td>
<td></td>
</tr>
<tr>
<td>The students</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Communicate with users and experts convincingly</td>
</tr>
<tr>
<td>Self-competences</td>
<td></td>
</tr>
<tr>
<td>The students</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>- Develop and reflect self-developed hypotheses to theories independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf300 - Hybrid Systems

Module name: Hybrid Systems
Module code: inf300
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Andreas Hein
 - Martin Georg Fränzle
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
The module gives an introduction to hybrid discrete-continuous systems, as arising by embedding digital hardware into physical environments, and it elaborates on state of the art methods for the mathematical modelling and the analysis of such systems. It thus provides central competences for understanding and designing reliable cyber-physical systems.

Professional competence
The students:

- Characterise formal models of cyber-physical systems: hybrid automata, hybrid state transition systems
- Name domain-specific system requirements: safety, stability, robustness
- Name analysis methods: symbolic state-space exploration, abstraction and abstraction refinement, generalized Lyapunov-Methods
- Use state-of-the-art analysis tools
- Select and apply adequate modelling and analysis methods for concrete application scenarios
- Apply methods to reduce large state spaces and reduce infinite-state systems by abstraction
- Know the de-facto industry standards for system modelling and are able to apply the corresponding modelling frameworks and tools

Methodological competence
The students:

- Model heterogeneous dynamical systems with adequate modelling and design tools, in particular Simulink/Stateflow
- Transfer modelling and analysis methods to other heterogeneous domains, e.g. socio-technical systems

Social competence
The students:

- Work in teams
- Solve complex modelling, design, and analysis tasks in teams

Self-competence
The students:

- Reflect their actions and respect the scope of methods dedicated to hybrid systems

Module contents
Content of the Module: Embedded computer systems continuously interact with their environment, which generally comprises state- and time-continuous components. The coupling of the embedded system to its environment thus induces complex interleavings between discrete computational and decision processes and continuous processes. The resulting processes are neither amenable to the analytic techniques of continuous control nor of discrete mathematics. They instead require a broader, integrated theory: hybrid discrete-continuous systems. The lectures provide an in-depth introduction into a variety of analysis and design methods of these computer-based systems and their recent extensions to cyber-physical systems.

The accompanying hands-on-project enhances the lecture by developing and using design and verification tools.

Recommended reading
- Luca P Carloni, Roberto Passerone, Allesandro Pinto & Alberto L Sangiovanni-Vincentelli: Languages
- Daniel Liberzon: Switching in Systems and Control, Birkhauser, 2003

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>irregular</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>A BSc. in CS or knowledge of ordinary differential</td>
</tr>
<tr>
<td>Examination / examination periods</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td></td>
<td>Semester project including written work and final presentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td></td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |
inf301 - Machine-oriented Systems Engineering

Module name: Machine-oriented Systems Engineering
Module code: inf301
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person:
Module responsibility:
- Alfred Mikschl
- Werner Damm

Authorized examiners:
- Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:
The module provides practical relevance to the design of digital embedded systems.

Professional competence:
The students:
- characterise the structure of microprocessor systems
- name control aspects of time sensitive external components
- program efficient embedded systems

Methodological competence:
The students:
- use specifications from electrical components data sheets

Social competence:
The students:
- work in a team
- discuss solutions

Module contents:
Embedded systems support complex feedback problems, control problems and data processing tasks. They have an important value creation potential for telecommunications, production management, transport and electronics. The functionality of embedded systems is realised by the integration of processors, special hardware and software. The embedded systems design is influenced by the heterogeneity of system architectures, the complexity of systems and technical and economic requirements.

This module gives an initial review of computer architectures. After that embedded systems are introduced by a specific microprocessor. Furthermore, external hardware will be connected to the microprocessor. Besides this, the design of circuit boards will be discussed. The students will design, develop and implement a circuit layout with CAD and programme this embedded system with a Flash-eprom.

Recommended reading:
Lecturers notes, hardware manuals and data sheets, and development tool manuals

Links:

Languages of instruction: German, English
Duration (semesters): 1 semester
Module frequency: semi-annual
Module capacity: unlimited
Modulelevel: AS (Akzentsetzung / Accentuation)
Modulart: Pflicht o. Wahlpflicht / compulsory or optional
Learning / Teaching / Type of program: V + P
Vorkenntnisse / Previous knowledge:
„Eingebettete Systeme I and II“ and successful completion of the module „Praktikum Technische Informatik“

Examination:
Examination periods:
Type of examination:

Final exam of module:
At the end of the lecture period
Portfolio (Design, development and implementation)
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td>2</td>
<td></td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf303 - Fuzzy Control and Artificial Neural Networks in Robotics and Automation

<table>
<thead>
<tr>
<th>Module name</th>
<th>Fuzzy Control and Artificial Neural Networks in Robotics and Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf303</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Human-Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Experts in different branches try to approach their application-specific control and information processing problems by using fuzzy logic and artificial neural networks (ANN). The experiences gathered up to now prove robotics and automation technology to be predestined fields of application of both these approaches. The major topics of the course are control problems in robotics and automation technology, principles of fuzzy logic and ANN and their practical applications, comparison of conventional and advanced control methods, combination of fuzzy logic and ANN in control systems. The course gives a comprehensive treatment of these advanced approaches for interested students.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Recognise control problems in robotics and automation technology,</td>
</tr>
<tr>
<td></td>
<td>Name principles of fuzzy logic and ANN and their practical applications,</td>
</tr>
<tr>
<td></td>
<td>Compare conventional and advanced control methods,</td>
</tr>
<tr>
<td></td>
<td>Characterise the combination of fuzzy logic and ANN in control systems</td>
</tr>
<tr>
<td>Methodological competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Deepen their knowledge for the practical use of the methods</td>
</tr>
<tr>
<td></td>
<td>Are able to transfer the gained knowledge for later use in their theses or studies for AMiR</td>
</tr>
<tr>
<td>Social competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Gain experience in interdisciplinary work</td>
</tr>
<tr>
<td></td>
<td>Are integrated into the recent research work</td>
</tr>
</tbody>
</table>

Objective of the module / skills:
Experts in different branches try to approach their application-specific control and information processing problems by using fuzzy logic and artificial neural networks (ANN). The experiences gathered up to now prove robotics and automation technology to be predestined fields of application of both these approaches. The major topics of the course are control problems in robotics and automation technology, principles of fuzzy logic and ANN and their practical applications, comparison of conventional and advanced control methods, combination of fuzzy logic and ANN in control systems. The course gives a comprehensive treatment of these advanced approaches for interested students.

Professional competences:
The students:
- Recognise control problems in robotics and automation technology,
- Name principles of fuzzy logic and ANN and their practical applications,
- Compare conventional and advanced control methods,
- Characterise the combination of fuzzy logic and ANN in control systems

Methodological competences:
The students:
- Will acquire knowledge of the tools, methods and applications in fuzzy logic and ANN
- Deepen their knowledge for the practical use of the given methods
- Can use common software tools for design and application of fuzzy logic and ANN

Social competence
The students:

- Gain experience in interdisciplinary work
- Are integrated into the recent research work
- Work together in small teams to solve problems
- Discuss and present developed control solutions in front of an audience within the tutorial

Self-competence
The students:

- Are able to transfer the gained knowledge for later use in their theses or studies for AMiR
- Can Design (complex) fuzzy logic controller and ANN systems
- Reflect their (control) solutions by using methods learned in this course

Module contents

- Control problems in robotics and automation technology
- Basic ideas of fuzzy logic and ANN
- Principles of fuzzy logic
- Fuzzy logic of rule-based systems
- ANN models
- ANN learning rules
- Multilayer perception networks and backpropagation
- Associative networks
- Self-organizing feature maps
- PID design principles
- Design of fuzzy control systems
- Fuzzy logic application examples
- Design of ANN control systems
- ANN application examples
- Fuzzy + Neuro: principles and applications

Recommended reading

Essential:

- Lecture notes (available at the secretariat, A1-3-303) in book form

Empfohlen:

Good secondary literature

- Altrock, M. O. R.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
- Kahler, J. und Hubert, F.: Fuzzy-Logik und Fuzzy-Control, Vieweg, 1993
- Kratzer, K.P.: Neuronale Netze, Carl Hanser, 1993
- Patterson, D.W.: Künstliche neuronale Netze, Prentice Hall, 1996
- Schulte, U.: Einführung in Fuzzy-Logik, Franzis-Verlag, München, 1993
- Zakharian, S. Ladewig-Riebler, P. und Thoer, St.: Neuronale Netze für Ingenieure, Vieweg, Wiesbaden, 1998
- Zimmermann H.-J. (Hrsg.): Datenanalyse, VDI-Verlag, 1995

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Control engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period until the beginning of the next semester</td>
<td>Hands-on-exercises and oral Exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

| **Total attendance time of module** | **56 h** |
inf305 - Medical Technology

<table>
<thead>
<tr>
<th>Module name</th>
<th>Medical Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf305</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person
- module responsibility
 - Andreas Hein
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competence
- The students:
 - Describe medical diagnosis and therapy methods
 - Understand the core concepts of computer-assisted medical interventions
 - Are aware of the basic concepts and legal conditions of the development of medical devices
 - Define the character of medical devices’ software parts and implement them
 - Assess the complex interaction of medical products and patients
 - Get familiar with the development of medical products within a short period of time

Methodological competence
- The students:
 - Recognise the interdisciplinary challenges and accordingly exchange information with other disciplines

Social competence
- The students:
 - Present solutions for specific questions

Self-competence
- The students:
 - reflect their solutions by using methods learned in this course

Module contents
- Medical areas and areas of application
- Basic requirements for medical systems (hygiene, MPG, technical security, materials)
- Medical systems:
 - Functional diagnostics (ECG, EMG, EEG)
 - Imaging systems (CT, MRI, ultrasound, PET, SPECT) - Therapy equipment (Laser, RF, Microtherapy)
 - Signal processing / monitoring (cardiovascular, hemodynamic, respiratory, metabolic, cerebral)
 - Medical Informatics (HIS, DICOM, Telemedicine, VR, image processing).

Recommended reading

essential:
- Lecture slides

recommended:
Verlag, 1997.

secondary literature:

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Module type</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Signal and image processing, control engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio: Hands-on exercises, report, and written or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |
inf307 - Robotics

<table>
<thead>
<tr>
<th>Module name</th>
<th>Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf307</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person
- module responsibility
 - Andreas Hein
 - Die im Modul Lehrenden
- authorized examiners
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competence
The students:
- Name and know the functions and applications of robot systems
- Characterise the basic concepts to program robot systems
- Differentiate between the interaction of mechanical, electrical and software components

Methodological competence
The students:
- Define characteristics and components of robot systems for a specific application
- Design and implement robot system sub-components
- Design and parameterise simple control structures
- Plan the application of robot systems and derive the requirements
- Model electrical and mechanical systems
- Develop and realise simple robot systems

Social competence
The students:
- Solve robot systems problems in team work

Self-competence
The students:
- Reflect their solutions in reference to robot system methods

Module contents

- Integration in production plants / aims / subsystems
- Architectures / classifications (classification of robots)
- Robot components + Computer systems for programming
 - PA-10
 - Lego Mindstorms
- Basics of kinematics
 - Coordinate transformation, homogeneous coordinates, Coordinate transitions
 - Kinematic equation systems, transformation of vectors
- Kinematic
 - Joint types (manipulators) / Wheels, TCP
 - Denavit-Hartenberg-Transformation
 - Forward calculation
 - Backward calculation
- Sensors
 - General properties of sensors, parameter
 - Simple optical position sensors
 - Inductive-, capacitive- und ultrasonic-sensors
 - Distance sensors (laser scanner, triangulation sensors)
- Force sensors
- Sensor data preparation
- Planning / Regulation
 - Overall regulation approach, terms, process- and control functions, PID-controller
 - Planning concepts and approaches (On-Line, Off-Line), planning processes, construction and path planning
- Actuators

Recommended reading

essential:
lecture nodes

recommended:

sekundar literature:

Links

Languages of instruction
German, English

Duration (semesters)
1 semester

Module frequency
one a year

Module capacity
unlimited

Module level
AS (Akzentsetzung / Accentuation)

Moduleart
Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>at the end of the lecture period</td>
<td>Portfolio: Hands-on exercises, report, and written or oral exam</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>42 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercises</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total attendance time of module
56 h
inf308 - Microrobotics II

Module name	Microrobotics II
Module code | inf308
ECTS credit points | 6.0 KP
Workload | 180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person
module responsibility
- Sergej Fatikow
- Die im Modul Lehrenden

authorized examiners
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
After having given an established introduction in the module “Microrobotics and Microsystem Technology” this lecture offers a further specialisation in microrobotics. Within the course, all relevant areas (among others the research topics of the division “Microrobotics and Control Engineering (AMiR)”) will be presented and analysed. The student will be provided with an insight into current research projects of AMiR and of other research institutes of microrobotics worldwide; here mainly the requirements of industry to microrobots will be discussed. The lecture will be enhanced by practical courses in the research laboratories of AMiR.

Professional competence
The students:
- Name and recognise the basic concepts of nanotechnology, in particular, micro- and nanorobotics approaches
- Differentiate the development, control and application of micro- and nanorobotics systems
- Implement and design application-specific micro- and nanorobotics systems

Methodological competence
The students:
- Transfer their control engineering and image processing abilities on interdisciplinary problems
- Transfer their hands-on experience to develop controls and applications of microrobotic systems on new tasks

Social competence
The students:
- Work in a team

Self-competence
The students:
- Reflect their problem-solving behaviour and use hands-on experience to develop, control and application of microrobotics

Module contents
Smart and versatile microrobots; micro actuators (piezo-, ferrofluid- and SMA-actuators) for microrobots; real-time image processing in the micro world (SEM, optical microscopy); micro force sensors and tactile sensors for microrobots; microrobot control systems, e.g. neural networks and fuzzy logic; haptic interface for the control of microrobots; neural speech interface for the control of microrobots; robot-based micro- and nanohandling (SEM, optical microscopy); applications: microassembly, nano-testing, cell handling; Micro Air Vehicles (MAVs); multi-robot systems: team behavior, communication, control issues

Recommended reading
- Lecture notes (can be obtained in our secretariate, A1-3-303)

Links
<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Module content</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Learning / teaching method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Module Microrobotics and Microsystem Technology</td>
</tr>
<tr>
<td>Examination examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
</tr>
</tbody>
</table>
inf311 - Low Energy System Design

<table>
<thead>
<tr>
<th>Module name</th>
<th>Low Energy System Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf311</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodul</td>
<td></td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction</td>
<td></td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems > Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>Master Informatik > Mastermodule</td>
<td></td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td>Wolfgang Nebel</td>
<td></td>
</tr>
<tr>
<td>authorized examiners</td>
<td></td>
</tr>
<tr>
<td>Die im Modul Lehrenden</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>This module introduces the estimation of power dissipation and optimisation.</td>
<td></td>
</tr>
</tbody>
</table>

Professional competence
The students:
- Discuss the fundamental problems of power dissipation
- Characterise the requirements-driven design process of embedded systems
- Name power loss analysis and optimization methods
- Design embedded systems with common design and analysis tools
- Design power-optimized embedded systems

Methodological competence
The students:
- Model systems with a hardware description language
- Analyze and model hardware components
- Perform multi-dimensional optimization of systems

Social competence
The students:
- Implement solutions of given problems in teams
- Discuss their outcomes appropriately

Self-competence
The students:
- Acknowledge the limits of their ability to cope with pressure during the modeling process of systems

Module contents
According to Moore’s Law the number of integratable transistors on a computer chip doubles every two years. In addition, new circuits are getting faster and faster. This leads not only to an increased functionality of a system, but it also increases the electrical power consumption.

This electrical power consumption is problematic from two different points of view: Firstly, the electrical power must be supplied. Secondly, the resulting heat has to dissipate from the system. An increased power consumption always causes lower battery life and higher energy costs. The heat generation reduces the reliability and life of integrated circuits. The cooling (ceramic housings, cooling elements, fans, etc.) increases the system's costs.

Today the development of heat, caused by power dissipation, needs to be considered during the embedded system design process. This knowledge takes the system's reliability and operation costs into account.

This module introduces the estimation of power dissipation and optimisation.

Recommended reading
- Designing CMOS Circuits for Low Power – Dimitros Soudris, Christian Piguet, Costas Goutis
- Low-Power CMOS VLSI Circuit Design – Kaushik Roy, Sharat C. Prasad
- Low-Power Electronics Design – Christian Piguet et al.
- Leakage in Nanometer CMOS Technologies – Siva G. Narendra, Anantha Chandrakasan
- Entwurf von digitalen Schaltungen und Systemen mit HDLs und FPGAs – F. Kesel, R. Bartholomä
- Slides of the module „Eingebettete Systeme I+II“ von Professor Dr.-Ing. Wolfgang Nebel
- Slides and technical readouts of the used hardware and development tools

Links

Languages of instruction German, English

Duration (semesters) 1 semester

Module frequency jährlich

Module capacity unlimited

Modullevel AS (Akzentsetzung / Accentuation)

Modulart Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program V+Ü

Vorkenntnisse / Previous knowledge
- inf200 Grundlagen der Technische Informatik,
- inf201 Technische Informatik,
- inf203 Eingebettete Systeme I+,
- inf204 Eingebettete Systeme II

Examination

Final exam of module
- at the end of the lecture period
- hands-on exercises and oral exam

Course type
- Lecture: 3 SWS (42 h)
- Exercises: 1 SWS (14 h)

Total attendance time of module 56 h
inf331 - Automated and Connected Driving

<table>
<thead>
<tr>
<th>Module name</th>
<th>Automated and Connected Driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf331</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
 | • Master Informatik > Mastermodule |
| Contact person | | | | |
| Prerequisites | |
| Skills to be acquired in this module | |
| Module contents | |
| Recommended reading | |
| Links | |
| Language of instruction | English |
| Duration (semesters) | 1 semester |
| Module frequency | |
| Module capacity | unlimited |
| Modullevel | --- |
| Modulart | je nach Studiengang Pflicht oder Wahlpflicht |
| Lern-/Lehrform / Type of program | |
| Vorkenntnisse / Previous knowledge | |
| Examination | examination periods | Type of examination |
| Final exam of module | | |
| Course type | Comment | SWS | Offer rhythm | Workload attendance |
| Lecture | 2 | | SunSem and WinSem | 28 h |
| Exercises | 2 | | SunSem and WinSem | 28 h |
| Total attendance time of module | | 56 h |
inf332 - Practice Robotics

<table>
<thead>
<tr>
<th>Module name</th>
<th>Practice Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf332</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
| | Master Informatik > Mastermodule |
| Contact person | |
| Prerequisites | |
| Skills to be acquired in this module | |
| Module contents | |
| Recommended reading | |
| Links | |
| Languages of instruction | German, English |
| Duration (semesters) | 1 semester |
| Module frequency | |
| Module capacity | unlimited |
| Modulart | |
| Modulart | je nach Studiengang Pflicht oder Wahlpflicht |
| Lern-/Lehrform / Type of program | |
| Vorkenntnisse / Previous knowledge | |
| Examination | |
| | |
| Final exam of module | |
| Course type | |
| Lecture | 2 |
| Exercises | 2 |
| Offer rhythm | |
| Workload attendance | |
| Lecture | SunSem and WinSem |
| Exercises | SunSem and WinSem |
| Total attendance time of module | 56 h |
inf333 - Sensor Technology in the Automotive Domain

<table>
<thead>
<tr>
<th>Module name</th>
<th>Sensor Technology in the Automotive Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf333</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Human-Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Languages of instruction

German, English

Duration (semesters)

1 semester

Module frequency

Module capacity

unlimited

Modulart

je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination examination periods Type of examination

Final exam of module

Course type Comment SWS Offer rhythm Workload attendance

Lecture 2 SumSem and WinSem 28 h
Exercises 2 SumSem and WinSem 28 h

Total attendance time of module 56 h
inf334 - System Level Design

<table>
<thead>
<tr>
<th>Module name</th>
<th>System Level Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf334</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Examining / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SumSem and WinSem</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SumSem and WinSem</td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |
inf335 - Strategy Synthesis

<table>
<thead>
<tr>
<th>Module name</th>
<th>Strategy Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf335</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Languages of instruction: German, English

Duration (semesters): 1 semester

Module frequency: unlimited

Module level: ---

Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge:

Examination:

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>SunSem and WinSem</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SunSem and WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SunSem and WinSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module: 56 h
inf336 - Application Area Automotive

<table>
<thead>
<tr>
<th>Module name</th>
<th>Application Area Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf336</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links
- German, English

Languages of instruction
- 1 semester

Duration (semesters)
- Unlimited

Module capacity
- ---

Modulart
- je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Previous knowledge

Examination

Course type
- Lecture
- Exercises

Comment
- SWS
- Offer rhythm
- Workload attendance

Final exam of module

<table>
<thead>
<tr>
<th>Lecture</th>
<th>2</th>
<th>SumSem and WinSem</th>
<th>28 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SumSem and WinSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module
- 56 h
inf338 - Design of Autonomous Systems

<table>
<thead>
<tr>
<th>Module name</th>
<th>Design of Autonomous Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf338</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>- Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulart</td>
<td>BC (Basiscurriculum / Base curriculum)</td>
</tr>
<tr>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
<td></td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf350 - Special Topics in 'Safety-Critical Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Safety-Critical Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf350</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| **Used in degree programmes** | Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
| | Master Informatik > Mastermodule |
| **Contact person** | module responsibility
| | Andreas Hein
| | Michael Sonnenschein
| | Werner Damm
| | Module counseling
| | Die im Modul Lehrenden |
| **Prerequisites** | This module integrates current developments in the field in adequate study courses. |
| **Skills to be acquired in this module** | Professional competences
| | The students:
| | - Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
| | - Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
| | - Identify, structure and solve problems/tasks, also in new or developing subject areas
| | - Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
| | - Are aware of the current limits and contribute to the development of computer science research and technology
| | - Discuss and evaluate recent computer science developments
| | Methodological competences
| | The students:
| | - Evaluate and apply tools, technology and methods sophisticatedly
| | - Combine new and original approaches and methods creatively
| | - Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
| **Social competences** | The students:
| | - Support team process by their abilities
| **Self-competences** | The students:
| | - Pursue the overall and special computer science development critically
<p>| | - Implement innovative professional activities effectively and independently |
| Module contents | See assigned course description, e.g. „Sicherheitsanalysetechniken“, „Zielarchitekturen Eingebetteter Systeme für Automotive-Anwendungen“, „Modellbasierte Systementwicklung“,... |
| Recommended reading | As announced in course |
| Links |

| Language of instruction | German |
| Duration (semesters) | 1 semester |
| Module frequency | unregelmäßig |
| Module capacity | unlimited |
| Modullevel | AS (Akzentsetzung) |
| Modulart | Wahlpflicht |
| Lern-/Lehrform / Type of program | 2 courses out of V, S, Ü, P, PR |
| Vorkenntnisse / Previous knowledge |</p>
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf351 - Special Topics in 'Safety-Critical Systems' II

Module name
Special Topics in 'Safety-Critical Systems' II

Module code
inf351

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person

- module responsibility
 - Michael Sonnenschein
 - Andreas Hein
 - Werner Damm
 - Die im Modul Lehrenden

- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

- This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:

- Support team process by their abilities

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Sicherheitsanalysetechniken“, „Modellbasierter Systementwurf“, ...

Recommended reading
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
halbjährlich

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf352 - Current Topics in 'Safety-Critical Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Safety-Critical Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf352</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>Werner Damm</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S or V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf353 - CurrentTopics in 'Safety-Critical Systems' II

Module name: CurrentTopics in 'Safety-Critical Systems' II
Module code: inf353
ECTS credit points: 3.0 KP
Workload: 90 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodul
- Master Informatik > Mastermodule

Contact person:
- Michael Sonnenschein
- Andreas Hein
- Werner Damm
- Lehrende der Informatik

Module counseling:
- Die im Modul Lehrenden

Prerequisites:
Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences:
The students:
- Communicate with users and experts convincingly

Self-competences:
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents:
See assigned course description

Recommended reading:
As announced in course

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S or V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf354 - Special Topics in 'Hybrid Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Hybrid Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf354</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
<pre><code> | • Master Informatik > Mastermodule |
</code></pre>
<p>| Contact person | |
| module responsibility | |
| | ○ Michael Sonnenschein |
| | ○ Andreas Hein |
| | ○ Martin Georg Fränzle |
| Module counseling | |
| | ○ Die im Modul Lehrenden |
| Prerequisites | |
| Skills to be acquired in this module | This module integrates current developments in the field in adequate study courses. |
| Professional competences | The students: |
| | • Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general |
| | • Recognise and evaluate applied techniques and methods of their subject and are aware of their limits |
| | • Identify, structure and solve problems/tasks, also in new or developing subject areas |
| | • Apply state of the art and innovative methods to solve problems, if necessary from other disciplines |
| | • Are aware of the current limits and contribute to the development of computer science research and technology |
| | • Discuss and evaluate recent computer science developments |
| Methodological competences | The students: |
| | • Evaluate and apply tools, technology and methods sophisticatedly |
| | • Combine new and original approaches and methods creatively |
| | • Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research |
| Social competences | The students: |
| | • Support team process by their abilities |
| Self-competences | The students: |
| | • Pursue the overall and special computer science development critically |
| | • Implement innovative professional activities effectively and independently |
| Module contents | See assigned course description, e.g. „Modellbasierter Systementwurf“, „Konstruktionsprinzipien ausgewählter Klassen von Fahrzeugfunktionen“ |
| Recommended reading | As announced in course |
| Links | |
| Language of instruction | German |
| Duration (semesters) | 1 semester |
| Module frequency | halbjährlich |
| Module capacity | unlimited |
| Modullevel | AS (Akzentsetzung) |
| Modulart | Wahlpflicht |
| Lern-/Lehrform / Type of program| 2 courses out of V, S, Ü, P, PR |
| Vorkenntnisse / Previous knowledge | |</p>
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf355 - Special Topics in 'Hybrid Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Hybrid Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf355</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td>Michael Sonnenschein</td>
<td></td>
</tr>
<tr>
<td>Andreas Hein</td>
<td></td>
</tr>
<tr>
<td>Martin Georg Fränzle</td>
<td></td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td>Die im Modul Lehrenden</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>2 courses out of V, S, Ü, P, PR</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

76 / 268
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf356 - CurrentTopics in 'Hybrid Systems' I

Module name: CurrentTopics in 'Hybrid Systems' I
Module code: inf356
ECTS credit points: 3.0 KP
Workload: 90 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Andreas Hein
 - Martin Georg Fränzle

Prerequisites:

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences:
The students:
- Communicate with users and experts convincingly

Self-competences:
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents:
See assigned course description

Recommended reading:
As announced in course

Links:

Languages of instruction: German, English
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Module level: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: S or V
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf357 - Aktuelle Themen aus dem Gebiet "Hybride Systeme" II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Aktuelle Themen aus dem Gebiet "Hybride Systeme" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf357</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>• Martin Georg Fränzle</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>• Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>• Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>• Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>• Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>• Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Professional competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>• Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>• Schedule time processes and resources</td>
</tr>
<tr>
<td>Methodological competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Communicate with users and experts convincingly</td>
</tr>
<tr>
<td>Social competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Communicate with users and experts convincingly</td>
</tr>
<tr>
<td>Self-competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>• Develop and reflect self-developed hypotheses to theories independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination periods</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf358 - Special Topics in 'Hardware/Software Systems' I

Module name: Special Topics in 'Hardware/Software Systems' I
Module code: inf358
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person:
- module responsibility: Michael Sonnenschein, Andreas Hein, Wolfgang Nebel
- Module counseling: Die im Modul Lehrenden

Prerequisites:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences:
The students:
- Support team process by their abilities

Self-competences:
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents:
See assigned course description, e.g. "Spezifikation und Modellierung Eingebetteter Systeme".

Recommended reading:
As announced in course

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: halbjährlich
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge: 82 / 268
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf359 - Spezielle Themen aus dem Gebiet "Hardware-/Software-Systeme" II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Spezielle Themen aus dem Gebiet "Hardware-/Software-Systeme" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf359</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Nebel</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. „Spezifikation und Modellierung Eingebetteter Systeme“

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Exercises or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf360 - CurrentTopics in 'Hardware/Software Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>CurrentTopics in 'Hardware/Software Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf360</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 • Master Informatik > Mastermodule |
| Contact person | module responsibility |
| | • Michael Sonnenschein |
| | • Andreas Hein |
| | • Wolfgang Nebel |
| | Module counseling |
| | • Die im Modul Lehrenden |

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description, e.g. "Energieeffizienz in der IKT"; "Smart Resource Integration"; ...

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf361 - Current Topics in 'Hardware/Software Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Hardware/Software Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf361</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Nebel</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>• Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>• Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>• Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>• Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>• Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td></td>
<td>Methodological competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>• Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>• Schedule time processes and resources</td>
</tr>
<tr>
<td></td>
<td>Social competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Communicate with users and experts convincingly</td>
</tr>
<tr>
<td></td>
<td>Self-competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>• Develop and reflect self-developed hypotheses to theories independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description, e.g. Energieeffizienz in der IKT, Smart Resource Integration, ...</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf366 - Special Topics in 'Microrobotics and Control Engineering' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Microrobotics and Control Engineering' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf366</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| **Used in degree programmes** | Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
| | Master Informatik > Mastermodule |
| **Contact person** | module responsibility
| | Andreas Hein
| | Michael Sonnenschein
| | Sergej Fatikow
| | Die im Modul Lehrenden |
| **Prerequisites** | This module integrates current developments in the field in adequate study courses. |
| **Skills to be acquired in this module** | Professional competences
The students:
| | - Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
| | - Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
| | - Identify, structure and solve problems/tasks, also in new or developing subject areas
| | - Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
| | - Are aware of the current limits and contribute to the development of computer science research and technology
| | - Discuss and evaluate recent computer science developments
| **Methodological competences** | The students:
| | - Evaluate and apply tools, technology and methods sophisticatedly
| | - Combine new and original approaches and methods creatively
| | - Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
| **Social competences** | The students:
| | - Support team process by their abilities
| **Self-competences** | The students:
| | - Pursue the overall and special computer science development critically
| | - Implement innovative professional activities effectively and independently
| **Module contents** | See assigned course description, e.g. > Nanomontage und Nanohandhabung#147; |
| **Recommended reading** | As announced in course
| **Language of instruction** | German
| **Duration (semesters)** | 1 semester
| **Module frequency** | jährlich
| **Module capacity** | unlimited
| **Modullevel** | AS (Akzentsetzung)
| **Modulart** | Wahlpflicht
| **Lern-/Lehrform / Type of program** | 2 courses out of V, S, Ü, P, PR
<p>| Vorkenntnisse / Previous knowledge |</p>
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf367 - Spezielle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Spezielle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf367</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodul</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Sergej Fatikow</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:

- Support team process by their abilities

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf368 - Aktuelle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Aktuelle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf368</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodul</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>− Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>− Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>− Sergiy Falikow</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>− Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulelevel: AS (Akzentsetzung)

Modulart: Wahlpflicht

Lern-/Lehrform / Type of program: S or V
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf369 - Current Topics in 'Microrobotics and Control Engineering' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Microrobotics and Control Engineering' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf369</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>- Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>- Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Module counciling</td>
</tr>
<tr>
<td></td>
<td>- Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Professional competences</td>
<td></td>
</tr>
<tr>
<td>The students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>- Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>- Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>- Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Methodological competences</td>
<td></td>
</tr>
<tr>
<td>The students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>- Schedule time processes and resources</td>
</tr>
<tr>
<td>Social competences</td>
<td></td>
</tr>
<tr>
<td>The students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Communicate with users and experts convincingly</td>
</tr>
<tr>
<td>Self-competences</td>
<td></td>
</tr>
<tr>
<td>The students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>- Develop and reflect self-developed hypotheses to theories independently</td>
</tr>
</tbody>
</table>

Module contents See assigned course description

Recommended reading As announced in course

Links

Language of instruction German
Duration (semesters) 1 semester
Module frequency unregelmäßig
Module capacity unlimited
Modulelevel AS (Akzentsetzung)
Modulart Wahlpflicht
Lern-/Lehrform / Type of program S or V
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf374 - Special Topics in ‘Automotive’ I

Module name: Special Topics in ‘Automotive’ I

Module code: inf374

ECTS credit points: 6.0 KP

Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmoduls
- Master Informatik > Mastermodule

Contact person

- module responsibility
 - Michael Sonnenschein
 - Andreas Hein
 - Martin Georg Fränzle

Module counseling:
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. "Zielarchitekturen Eingebetteter Systeme für Automotive-Anwendungen".

Recommended reading

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: halbjährlich

Module capacity: unlimited

Module level: AS (Akzentsetzung)

Modulart: Ergänzung/Professionalisierung

Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf375 - Special Topics in 'Automotive' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Automotive' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf375</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td>◦ Michael Sonnenschein</td>
<td></td>
</tr>
<tr>
<td>◦ Andreas Hein</td>
<td></td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td>◦ Die im Modul Lehrenden</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

- This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination

examination periods

Type of examination
| Final exam of module | The exam period will be announced during the course | Portfolio or presentation or oral exam |
inf376 - Current Topics in 'Automotive' I

Module name: Current Topics in 'Automotive' I
Module code: inf376
ECTS credit points: 3.0 KP
Workload: 90 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person:
- Module responsibility
 - Michael Sonnenschein
 - Andreas Hein
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht

Lern-/Lehrform / Type of program: S or V

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf377 - Current Topics in 'Automotive' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Automotive' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf377</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel: AS (Akzentsetzung)

Modulart: Wahlpflicht

Lern-/Lehrform / Type of program: S or V

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf450 - Correctness of Graph Programs

<table>
<thead>
<tr>
<th>Module name</th>
<th>Correctness of Graph Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf450</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 | • Master Informatik > Mastermodule |
| Contact person | module responsibility |
| | • Michael Sonnenschein |
| | • Annegret Habel |
| | Module counciling |
| | • Die im Modul Lehrenden |

Prerequisites

Skills to be acquired in this module

The objectives of this module are modelling of systems, system changes and system properties. Introduction to graph programs. Introduction into system correctness. Methods for proving system correctness.

Professional competence

The students:

- Describe the basics of graph programs and graph properties
- Describe verification procedures of system correctness

Methodological competence

The students:

- Model systems, system changes and system properties
- Apply the formalism of graph programs

Social competence

The students:

- Solve problems in a team
- Present and discuss their proposed solutions

Self-competence

The students:

- Reflect upon their actions with regard to term rewriting systems and the methods of those

Module contents

The module is an introduction to the modelling of systems, system changes and system properties by means of graphs, graph programs and graph conditions and presents a method for proving correctness of systems with respect to a pre- and a postcondition.

The basic structures used in this lecture are graphs; they are used in practically all domains of computing science for the representation of complex structures. Graph programs are constructed from the core constructs of nondeterministic rule application, sequential composition and iteration and they can effect programmatic changes of a graph structure. One well-known method for determining the correctness of programs with respect to a pre- and a postcondition is based on the construction of a weakest precondition of the postcondition with respect to the program and the attempt to decide whether the given precondition implies the computed weakest precondition.

Recommended reading

Links

<p>| Language of instruction | German |</p>
<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>im 2-Jahres-Zyklus</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Will be announced during the course</td>
<td>presentation or oral exam</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td></td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |
inf451 - Complexity Theory

Module name Complexity Theory
Module code inf451
ECTS credit points 6.0 KP
Workload 180 h

Used in degree programmes
- Master Informatik > Mastermodule

Contact person
- module responsibility
 - Michael Sonnenschein
 - Eike Best
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module covers the computational complexity of algorithms. Complexity considerations are concerned with the time, the memory, and the parallelism required or allowed, for solving an algorithmic problem. In particular, one is interested in lower and/or upper time and space bounds, and in approximative investigations providing information about entire classes of algorithms. For any concrete problem, complexity theory aims at being able to find out which class it belongs to, and thus estimating the cost of the most efficient methods of solving it. Methods taught in this module are general, not depending on any particular algorithmic model or chosen programming language.

Professional competence
The students:
- use Turing machines and variants thereof
- define time, memory, and processor requirements of algorithmic problems
- specify the most relevant complexity classes
- estimate the computational complexity of the most important problems

Methodological competence
The students:
- analyse the complexity of algorithms
- apply techniques of simulation, reduction, and diagonalisation
- compare new problems in terms of complexity

Social competence
The students:
- present proof sketches, proofs, and algorithmic solutions in front of an audience

Module contents
- Mathematical foundations
- Turing machines and register machines
- Space and time hierarchies, equivalence and hierarchy theorems
- Complexity classes: P, NP, NPC, PSPACE, and others
- Alternating automata and polynomial time hierarchy
- Circuit complexity

Recommended reading
- Eike Best: Skript zur Vorlesung (2015)

Links

Language of instruction German
<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
<td>exercises and oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |

<table>
<thead>
<tr>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>109 / 268</th>
</tr>
</thead>
</table>
inf453 - Combination of Specification Techniques

Module name
Combination of Specification Techniques

Module code
inf453

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person
module responsibility
- Michael Sonnenschein
- Andreas Hein
- Ernst-Rüdiger Olderog

Module counseling
- Die im Modul Lehrenden

Prerequisites
inf400/inf401 Theoretische Informatik I and II

Skills to be acquired in this module
Introduction to the specification languages Z for data, CSP for processes, and their combination CSP-OZ for reactive systems with data and process parts.

Professional competence
The students:
- specify data and processes with Z, CSP and CSP-OZ formally
- check data refinement relations formally
- verify CSP-OZ specifications with FDR model checker

Methodological competence
The students:
- are able to integrate complementary specification methods

Social competence
The students:
- work together in small groups to solve problems
- present solutions to problems to groups of other students

Self-competence
The students:
- learn persistence in pursuing difficult tasks
- learn precision in specifying problems

Module contents
The course addresses a research trend in formal methods, the combination and integration of different specification methods. It focuses on a concrete combination CSP-OZ of the specification techniques CSP (Communicating Sequential Processes) for processes and Z and Object-Z for data, respectively. Reactive systems are described by CSP-OZ.

As a preparation, the specification languages Z and CSP are described, followed by the combination CSP-OZ with its process-oriented semantics. The concepts of refinement and inheritance and the possibility of automatic verification of a sublanguage of CSP-OZ with the FDR model checker for CSP will be discussed. Finally, the course explains possibilities of extending CSP-OZ for the specification of time-critical systems.

Topics:
- specification of complex data and operations in Z, type definition and pattern calculations of Z, data refinement
- specifications of communicating processes in CSP, operational semantics of CSP, three abstract semantic models

for CSP: Trace semantics, failures semantics, failures-divergences semantics, process refinement in the above semantics, FDR model checker for CSP
- combined specification method CSP-OZ, transformational semantics as CSP-process, theorems of
refinements,
object-oriented concepts of class and inheritance in CSP-OZ

Recommended reading

Essential:

- M. Spivey. The Z Notation - A Reference Manual. Prentice Hall, 1989
 (siehe http://spivey.oriel.ox.ac.uk/~mike/zrm/index.html).
 (siehe http://www.usingz.com).

Recommended:

- C. Fischer. CSP-OZ: A Combination of Object-Z and CSP. In H. Bowmann, J. Derrick (Editors). Formal

Links

Language of instruction German

Duration (semesters) 1 semester

Module frequency unregelmäßig

Module capacity unlimited

Modullevel AS (Akzentsetzung)

Modulart Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>exercises and oral exam</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Exercises</th>
<th>Total attendance time of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf454 - Communicating and Mobile Systems

Module name: Communicating and Mobile Systems
Module code: inf454
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Ernst-Rüdiger Olderog
- authorized examiners
 - Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:

Professional competence:
The students:
- Know the theory of the operational semantics of CCS and the π-calculus
- Perform equivalence proofs using simulations and bisimulations
- Specify communicating and mobile systems with CCS and the π-calculus

Methodological competence:
The students:
- Learn about different views on mobility
- Recognize equivalences as formal means for system correctness

Social competence:
The students:
- Work together in small groups to solve problems
- Present their solutions to groups of other students

Self-competence:
The students:
- Learn persistence in pursuing difficult tasks
- Learn precision in specifying problems

Module contents:

Communication is one of the basic concepts of computer science. It occurs between computers in a network as well as between components of a computer. The focus of the course is on Robin Milner's π-calculus. It enables a new modelling of communication, taking the location of the communication into account.

The π-calculus can describe the change of data in a computer as well as the sending of messages or even programs along networks like the internet. It is also possible to describe reconfigurable networks. This will be shown using the examples of mobile phones, schedulers, automatic vending machines, data structures, communication protocols, and objects in object-oriented programming. All these applications are backed by the theory of the π-calculus, which is based on operational semantics and a concept of behavioural equivalence.

The theory will be explained in a step-by-step manner.

Topics:
- different views on mobility
- transition systems with simulations and bisimulations
- Milner's Calculus of Communicating Systems (CCS) and Milner's π-calculus for mobile systems, both with operational semantics, structural congruence, strong equivalence and observational equivalence, relationship between reactions and transitions, solvability of recursive equations
- formal specification of examples of communicating and mobile systems using CCS and the π-calculus
- proof of strong equivalence and observational equivalence of given processes
- specification of dynamic data structures in the π-calculus

Recommended reading

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Theoretical Computer Science II</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Workload attendance

- Lecture: 42 h
- Exercises: 14 h
- Total attendance time of module: 56 h
inf456 - Real-Time Systems

Module name
Real-Time Systems

Module code
inf456

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person
Ernst-Rüdiger Olderog

Prerequisites

Skills to be acquired in this module
Introduction to formal methods of the specification and verification of time sensitive systems and their combinations.

Professional competence
The students:
- Learn about different models of time and real-time properties
- Specify and verify real-time systems
- Model real-time systems using Timed Automata and PLC-Automata
- Apply the model checker UPPAAL for the verification of real-time properties
- Specify real-time systems using the Duration Calculus
- Learn about decidability and undecidability results for real-time systems

Methodological competence
The students:
- Recognize logic and automata as adequate forms for describing real-time systems

Social competence
The students:
- Work together in small groups to solve problems
- Present their solutions to groups of other students

Self-competence
The students:
- Learn persistence in pursuing difficult tasks
- Learn precision in specifying problems

Module contents
Examples of time-critical systems are railway control systems, robots, or even gas burners. It is essential for these systems to comply with certain timing conditions. For example, the control of a railway crossing must close the gates not later than 4 seconds after the sensors have reported an approaching train. If the gates are open, they should stay that way for at least 15 seconds to allow for a safe crossing of vehicles.

Different specification methods have been developed to describe such timing conditions. The Duration Calculus developed by Zhou Chaochen in 1991 is one attractive method. It is a logic combined with a calculus, in which the duration of states can be described. The course will introduce the Duration Calculus and will explain its application by means of examples. As further specification method Timed Automata introduced by Alur & Dill in 1994 will be presented. After the specification of real-time system requirements the verification of programs implementing these requirements will follow. The specification methods of the Duration Calculus and Timed Automata are used to describe the real-time behaviour of these programs. The correctness is then proven on the basis of these behavioural descriptions.

Topics:
discrete and continuous model of time
logics and automata models for the specification of real-time systems (predicate logic, Duration Calculus, Timed CTL, Timed Automata, PLC-Automata)
decidability and undecidability results for real-time systems
model checker UPPAAL for Timed Automata
formal specification of real-time systems using Duration Calculus as well as Timed Automata and PLC-Automata
verification of concrete Timed Automata using the model checker UPPAAL,
transformation of Duration Calculus for discrete time into regular languages
implementability of real-time systems on PLC-like hardware

Recommended reading

essential:

recommended:

Links

Languages of instruction | German, English
Duration (semesters) | 1 semester
Module frequency | unregelmäßi
Module capacity | unlimited
Modulelevel | AS (Akzentsetzung / Accentuation)
Modulart | Pflicht o. Wahlpflicht / compulsory or optional
Lern-/Lehrform / Type of program | V+Ü
Vorkenntnisse / Previous knowledge | Theoretical Computer Science I and II

Examination | examination periods | Type of examination
Final exam of module | at the end of the lecture period | exercises and written or oral exam

Course type | Comment | SWS | Offer rhythm | Workload attendance
Lecture | 3 | | | 42 h
Exercises | 1 | | | 14 h
Total attendance time of module | | | | 56 h
inf458 - Term Rewriting Systems

Module name Term Rewriting Systems
Module code inf458
ECTS credit points 6.0 KP
Workload 180 h
Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule
Contact person
 module responsibility
- Michael Sonnenschein
- Annegret Habel
Module counseling
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
The objectives of this module are an introduction to (term) rewriting systems, termination and confluence, the undecidable sets of termination and confluence problems, verification procedures of termination and confluence

Professional competence
The students:
- Describe the basics of term rewriting systems
- Characterise the undecidability of termination and confluence problems
- Describe verification procedures of termination and confluence

Methodological competence
The students:
- Apply verification procedures of termination and confluence
- Apply Huet's completion procedure

Social competence
The students:
- Solve problems in a team
- Present and discuss their results

Self-competence
The students:
- Reflect their actions with regard to term rewriting systems and the methods of those

Module contents
The module is an introduction to term rewriting systems and provides verification procedures for termination and confluence. Term rewriting systems, termination and confluence are introduced, the undecidability of termination and confluence problems and the decidability for a set of special term rewriting systems are shown. For this purpose reduction and simplification orders, critical pairs, orthogonality and Huet's completion procedure are introduced, examined and combined.

Recommended reading

Links
Language of instruction German
Duration (semesters) 1 semester
Module frequency im 2-Jahres-Zyklus
Module capacity unlimited
Modullevel AS (Akzentsetzung)
<table>
<thead>
<tr>
<th>Modulart</th>
<th>Wahlpflicht</th>
</tr>
</thead>
</table>

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>exercises and oral or written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total attendance time of module 56 h
inf460 - Security

<table>
<thead>
<tr>
<th>Module name</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf460</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 semester

Module frequency

Module capacity
- unlimited

Modullevel
- ---

Modulart
- je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

examination periods

Type of examination

Final exam of module
inf461 - Security of Cyber-Physical Systems

<table>
<thead>
<tr>
<th>Module name</th>
<th>Security of Cyber-Physical Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf461</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Engineering of Socio-Technical Systems > Systems Engineering
 • Master Informatik > Mastermodule |
| Contact person | | |
| Prerequisites | |
| Skills to be acquired in this module | |
| Module contents | |
| Recommended reading | |
| Links | |
| Languages of instruction | German, English |
| Duration (semesters) | 1 semester |
| Module frequency | |
| Module capacity | unlimited |
| Modulart | je nach Studiengang Pflicht oder Wahlpflicht |
| Lern-/Lehrform / Type of program | |
| Vorkenntnisse / Previous knowledge | |
| Examination | examination periods | Type of examination |
| Final exam of module | |
inf480 - Special Topics in 'Parallel Systems' I

Module name Special Topics in 'Parallel Systems' I

Module code inf480

ECTS credit points 6.0 KP

Workload 180 h

Used in degree programmes
- Master Informatik > Mastermodule

Contact person

- module responsibility
 - Michael Sonnenschein
 - Eike Best

- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Automatentheorie und Logik“, „Modelchecking“, „Effiziente Algorithmen“ und „Theorie und Spiele“.

Recommended reading
As announced in course

Links

Language of instruction German

Duration (semesters) 1 semester

Module frequency unregelmäßig

Module capacity unlimited

Modullevel AS (Akzentsetzung)

Modulart Wahlpflicht

Lern-/Lehrform / Type of program 2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination examination periods

Type of examination
| Final exam of module | At the end of the lecture period | Portfolio or presentation or oral exam |
inf481 - Special Topics in 'Parallel Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Parallel Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf481</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

- module responsibility
 - Michael Sonnenschein
 - Eike Best

Module counseling

- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

- Support team process by their abilities

Self-competences

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. „Automatentheorie und Logik“, „Modelchecking“, „Effiziente Algorithmen“ und „Theorie und Spiele“.

Recommended reading

As announced in course

Links

Language of instruction

- German

Duration (semesters)

- 1 semester

Module frequency

- unregelmäßig

Module capacity

- unlimited

Modullevel

- AS (Akzentsetzung)

Modulart

- Wahlpflicht

Lern-/Lehrform / Type of program

- 2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
</table>

122 / 268
| Final exam of module | At the end of the lecture period | Portfolio or presentation or oral exam |
inf482 - Current Topics in 'Parallel Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Parallel Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf482</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>- Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>- Eike Best</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>- Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:

- Communicate with users and experts convincingly

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

Language of instruction German
Duration (semesters) 1 semester
Module frequency unregelmäßig
Module capacity unlimited
Modullevel AS (Akzentsetzung)
Modulart Wahlpflicht
Lern-/Lehrform / Type of program S or V
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>

inf483 - Current Topics in 'Parallel Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Parallel Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf483</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Eike Best</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Professional competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>- Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>- Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>- Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Methodological competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>- Schedule time processes and resources</td>
</tr>
<tr>
<td>Social competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Communicate with users and experts convincingly</td>
</tr>
<tr>
<td>Self-competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>- Develop and reflect self-developed hypotheses to theories independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf484 - Special Topics in 'Correct Systems Design' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Correct Systems Design' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf484</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>- Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>- Ernst-Rüdiger Olderog</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>- Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td></td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>- Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>- Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>- Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Methodological competences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Evaluate and apply tools, technology and methods sophisticatedly</td>
</tr>
<tr>
<td></td>
<td>- Combine new and original approaches and methods creatively</td>
</tr>
<tr>
<td></td>
<td>- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td>Social competences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Support team process by their abilities</td>
</tr>
<tr>
<td>Self-competences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>- Implement innovative professional activities effectively and independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>2 courses out of V, S, Ü, P, PR</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf485 - Special Topics in 'Correct Systems Design' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Correct Systems Design' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf485</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td>Michael Sonnenschein</td>
<td></td>
</tr>
<tr>
<td>Ernst-Rüdiger Olderog</td>
<td></td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td>Die im Modul Lehrenden</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:

- Support team process by their abilities

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf486 - CurrentTopics in 'Correct Systems Design' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>CurrentTopics in 'Correct Systems Design' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf486</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Hans Fleischhack</td>
</tr>
<tr>
<td></td>
<td>• Ernst-Rüdiger Olderog</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

- Language of instruction: German
- Duration (semesters): 1 semester
- Module frequency: unregelmäßig
- Module capacity: unlimited
- Modullevel: AS (Akzentsetzung)
- Modulart: Ergänzung/Professionalisierung
- Lern-/Lehrform / Type of program: S or V

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf487 - CurrentTopics in 'Correct Systems Design' II

Module name: CurrentTopics in 'Correct Systems Design' II
Module code: inf487
ECTS credit points: 3.0 KP
Workload: 90 h
Used in degree programmes: Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Ernst-Rüdiger Olderog
- authorized examiners
 - Ernst-Rödiger Olderog
 - Die im Modul Lehrenden
- Module counselling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents: See assigned course description
Recommended reading: As announced in course

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S or V</th>
</tr>
</thead>
</table>

| Vorkenntnisse / Previous knowledge | |
|------------------------------------| |

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf488 - Special Topics in 'Formal Languages' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Formal Languages' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf488</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Annegret Habel</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel: AS (Akzentsetzung)

Modulart: Wahlpflicht

Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination

examination periods Type of examination

Final exam of module At the end of the lecture period Portfolio or presentation or oral exam
inf489 - Special Topics in 'Formal Languages' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Formal Languages' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf489</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>○ Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>○ Annegret Habel</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>○ Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel: AS (Akzentsetzung)

Modulart: Wahlpflicht

Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination examination periods: At the end of the lecture period

Type of examination: Portfolio or presentation or oral exam
inf490 - Current Topics in 'Formal Languages' I

Module name: Current Topics in 'Formal Languages' I
Module code: inf490
ECTS credit points: 3.0 KP
Workload: 90 h
Used in degree programmes: Master Informatik > Mastermodule

Contact person:
- Michael Sonnenschein
- Annegret Habel

Module counseling:
- Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:
- This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences:
The students:
- Communicate with users and experts convincingly

Self-competences:
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents:
See assigned course description

Recommended reading:
As announced in course

Links:

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: halbjährlich
Module capacity: unlimited
Modulelevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: S or V

Vorkenntnisse / Previous knowledge:

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf491 - Current Topics in 'Formal Languages' II

Module name Current Topics in 'Formal Languages' II
Module code inf491
ECTS credit points 3.0 KP
Workload 90 h
Used in degree programmes Master Informatik > Mastermodule

Contact person

- module responsibility
 - Michael Sonnenschein
 - Annegret Habel

- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:

- Communicate with users and experts convincingly

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents See assigned course description
Recommended reading As announced in course

Links

Language of instruction German
Duration (semesters) 1 semester
Module frequency unregelmäßig
Module capacity unlimited
Modulelevel AS (Akzentsetzung)
Modulart Wahlpflicht
Lern-/Lehrform / Type of program S or V
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf494 - Current Topics in 'Modeling and Analysis of Complex Systems' I

Module name: Current Topics in 'Modeling and Analysis of Complex Systems' I
Module code: inf494
ECTS credit points: 3.0 KP
Workload: 90 h
Used in degree programmes: Master Informatik > Mastermodule

Contact person
- module responsibility
 - Michael Sonnenschein
 - Die im Modul Lehrenden
 - Sibylle Fröschle
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description, e.g. „Security: Grundlagen“ oder „Security for Cyberphysical Systems“

Recommended reading
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: S or V
Vorkenntnisse / Previous knowledge

144 / 268
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf495 - Current Topics in 'Modeling and Analysis of Complex Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Modeling and Analysis of Complex Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf495</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

- Sebastian Lehnhoff
- Sibylle Fröschle

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description, e.g. <Security: Grundlagen> oder <Security for Cyberphysical Systems>

Recommended reading

As announced in course

Links

- Language of instruction: German
- Duration (semesters): 1 semester
- Module frequency: unregelmäßig
- Module capacity: unlimited
- Module level: AS (Akzentsetzung)
- Modulart: Wahlpflicht
- Lern-/Lehrform / Type of program: S or V
- Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf500 - Modelling and Simulation of Ecological Systems

Module name: Modelling and Simulation of Ecological Systems
Module code: inf500
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Sustainability Economics and Management > Ergänzungsmodule

Contact person:
- Module responsibility
 - Michael Sonnenschein
 - Ute Vogel
- Module counselling
 - Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:

Professional competence:
The students:
- name general discrete and continuous modeling methods and space-based model designs
- explain elementary concepts of ecological systems
- characterise typical qualities as well as advantages and disadvantages of different modelling methods for ecological systems and evaluate them
- appropriately apply modelling concepts for ecological systems
- Describe basic simulation methods, in particular for discrete models, and put them into practice

Methodological competence:
The students:
- use basicsimulation methods for discrete models
- systematically learn about new simulation tools in a short time
- implement simple ecological models

Social competence:
The students:
- Solve tasks in teams of 2-3 students

Self-competence:
The students:
- Reflect their actions considering simulation methods

Module contents:

Methods of modelling and simulation enable a detailed understanding of interdependencies in dynamic systems. In the field of ecology there are numerous methodical approaches, for example cause-effect graphs, differential equations, Markov models, L-Systems, cellular automata or individual-oriented models. These approaches are exemplary introduced by the lecture and are illustrated by exemplary core concepts of ecological systems. These modelling methods are accompanied by simulation procedures.

Software tools were and are being developed for the use of such methods. Those tools are exemplarily discussed regarding their construction and functionality. Tools for mathematical model simulations as well as individual-oriented simulations are introduced and are used in exercises.

The interpretation of simulation results leads to model validation and to a discussion on the forecast quality of models.

The module “inf500 Modellbildung in Simulation ökologischer Systeme” is accompanied by the module “inf501 Environmental Information Systems”, which focuses on persistent storage of spatial information as well as concepts of data analysis. Nevertheless, the modules can be taken independently from each other.

Recommended reading:

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Module level</td>
</tr>
<tr>
<td>Modulart</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
<td>oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>42 h</td>
<td>42 h</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td>14 h</td>
<td>14 h</td>
<td></td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |
inf501 - Environmental Information Systems

Module name: Environmental Information Systems

Module code: inf501

ECTS credit points: 6.0 KP

Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Bereichswahlmodule

Contact person:
- Module responsibility:
 - Michael Sonnenschein
 - Ute Vogel
- Module counseling:
 - Die im Modul Lehrenden

Prerequisites:
- Informationssysteme I

Skills to be acquired in this module:

Professional competence:
The students:
- Apply basic processing algorithms to classify and process data
- Compare, evaluate and design data structures to store spatial data efficiently
- Apply basic functions of a geo-information system
- Describe, evaluate and apply basic processes of data mining
- Describe, evaluate and apply basic geostatistics processes
- Evaluate and apply multicriteria decision making processes

Methodological competence:
The students:
- Use geoinformation systems for environmental application
- Use data mining tools for data analysis

Social competence:
The students:
- Solve tasks in teams of 2-3 students
- Present and discuss their solutions in class

Self-competence:
The students:
- Reflect their own behaviour with regard to the methods of environmental informatics

Module contents:
Content of the Module: Environmental information systems make information about the general environmental state available for public management and public facilities, enterprises or interested citizens. The collection, storage and evaluation of this information is interesting for computer science.

Within the scope of the lecture we will examine the processing of environmental information step-by-step, this means:

- problems of data acquisition and data processing,
- data structures and database concepts for an efficient access to (usually) spatial data,
- introduction of data analysis (in particular from geostatistics and data mining),
- introduction of multicriteria decision processes, as well as
- the supply of data supported by meta data.

The module "Umweltinformationssysteme" is accompanied by the module "Modellbildung in Simulation ökologischer Systeme". The subjects of "Modellbildung in Simulation ökologischer Systeme" represent the dynamic aspects of environmental systems (mainly of ecological systems). Nevertheless, the modules can be taken independently from each other.

Recommended reading:
<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Modullevel</td>
</tr>
<tr>
<td>Modulart</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>second and third week after the end of the lecture period - retake before the upcoming lecture period</td>
<td>oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |
inf502 - Simulation

<table>
<thead>
<tr>
<th>Module name</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf502</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Informatik > Mastermodule
 | • Master Wirtschaftsinformatik > Bereichswahlmodule |

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Languages of instruction | German, English |
Duration (semesters) | 1 semester |

Module frequency

Module capacity | unlimited |
Modullevel | BC (Basiscurriculum / Base curriculum) |
Modulart | je nach Studiengang Pflicht oder Wahlpflicht |

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio</td>
</tr>
</tbody>
</table>

Course type	Comment	SWS	Offer rhythm	Workload attendance
Lecture | | 2 | SumSem and WinSem | 28 h |
Seminar | | 2 | WinSem | 28 h |
Practical | | 2 | SumSem and WinSem | 28 h |

Total attendance time of module | 84 h |

Workload attendance:
- Lecture: 28 h
- Seminar: 28 h
- Practical: 28 h
inf510 - Energy Information Systems

<table>
<thead>
<tr>
<th>Module name</th>
<th>Energy Information Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf510</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Bereichswahlmodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Sebastian Lehnhoff</td>
</tr>
<tr>
<td></td>
<td>Module counciling</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students will learn different approaches to integrate distributed facilities, the regulatory framework, relevant standards and architecture concepts of energy management systems and will be able to apply this knowledge.</td>
</tr>
<tr>
<td>Professional competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• develop and evaluate IT-architectures for energy management systems</td>
</tr>
<tr>
<td></td>
<td>• model objects of this domain appropriately</td>
</tr>
<tr>
<td></td>
<td>• model energy information systems</td>
</tr>
<tr>
<td></td>
<td>• realise and differentiate advanced tasks of decentralised energy management systems</td>
</tr>
<tr>
<td>Methodological competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• identify problems of energy management, analyse these problems systematically and provide solutions</td>
</tr>
<tr>
<td></td>
<td>• apply different simulation approaches of decentralised plants and consumers</td>
</tr>
<tr>
<td>Social competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• discuss solutions for energy management systems in the group</td>
</tr>
<tr>
<td></td>
<td>• develop use cases in teams</td>
</tr>
<tr>
<td></td>
<td>• present self-developed solutions</td>
</tr>
<tr>
<td>Self-competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Reflect their actions with regard to structuring and decomposing systems</td>
</tr>
<tr>
<td></td>
<td>• Reflect their own use of power as a limited resource</td>
</tr>
<tr>
<td>Module contents</td>
<td>This module provides the computer science basics for energy management. It provides the requirements of energy supply information systems with the focus on technical components and the requirements of decentralised and renewable energy plants. These are:</td>
</tr>
<tr>
<td></td>
<td>• Architectures for energy information systems, e.g. SOA, Seamless Integration Architecture (IEC TC 57), OPC-UA</td>
</tr>
<tr>
<td></td>
<td>• Norms and standards of energy industry data models (CIM, 61850)</td>
</tr>
<tr>
<td></td>
<td>• Systematisation of energy information system requirements based on ontologies</td>
</tr>
<tr>
<td></td>
<td>• Development, analysis and adaption of energy industry reference models and processes</td>
</tr>
<tr>
<td></td>
<td>• Methods and technologies to support energy industry processes</td>
</tr>
<tr>
<td></td>
<td>• Methods and algorithms to support decision processes of the decentralised energy plants control</td>
</tr>
<tr>
<td></td>
<td>• Smart Grid plant communication, particularly for load management</td>
</tr>
<tr>
<td></td>
<td>• Methods for modelling and simulation of power supply system dynamics</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>Crastan V.: "Elektrische Energieversorgung II", Springer 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the semester</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td>56 h</td>
</tr>
</tbody>
</table>
Prerequisites

After successful completion of the course the students should be able to understand the existing structures and technical basis of energy systems to produce, transfer and distribute electricity and their interaction and dependency on each other. They should have developed an understanding for necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems. The students are able to estimate and evaluate the requirements and challenges of ICT and computer science which are caused by the development and integration of unforeseeable fluctuations of decentralised plants. The students will be able to estimate the influence of distributed control concepts and algorithms for decentralised plants and consumers in the so called Smart Grid energy systems. Regarding the requirements the students will be able to analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems.

Professional competence

The students:
- understand the existing structures and the technical basis of energy systems producing, transferring and distributing electricity and their interaction and dependency on each other.
- develop an understanding for necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems.
- estimate and evaluate the requirements and challenges of ICT and computer science which are caused by the development and integration of unforeseeable fluctuations of decentralised plants.
- estimate the influence of distributed control concepts and algorithms for decentralised plants and consumers in the so called Smart Grid energy systems.

Methodological competence

The students:
- analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems
- use advanced mathematical methods to calculate networks

Social competence

The students:
- create solutions in small teams
- discuss their solutions

Self-competence

The students:
- reflect their own use of electricity as a limited resource

Module contents

Content of the Module: In this course information technology, economical energy industry and technical basic knowledge and methods are analysed by using concrete Smart Grid approaches. The basic calculation methods for an intelligent grid management are introduced.

This module deals with the technical and economical framework for a permissable electrical network as well as mathematical modelling and calculation methods to analyse conditions of electrical energy networks (in stationary conditions). These are:
• The organisation of the EU energy market (regulatory framework, responsibility in liberalisation of electrical energy systems)
• Establishment and operation of electrical energy supply networks (network topology, statutory duties of supply, supply quality/system services, malfunctions and protection systems)
• Network calculation (complex vector representation, effective/idle power, mathematical performance models/net model, transformation: node performance to node voltage and electricity, calculation of conductive current, current flow, fix-point-iteration, Newton-Raphson-Method, voltage drop, transformer model)
• Intelligent network management (Smart Grids), aggregation forms, machine learning approaches

Recommended reading

Suggested reading:

• Crastan V.: “Elektrische Energieversorgung II”, Springer 2004

Links

Language of instruction German
Duration (semesters) 1 semester
Module frequency jährlich
Module capacity unlimited
Modullevel AS (Akzentsetzung)
Modulart Wahlpflicht

Lern-/Lehrform / Type of program

Previous knowledge

Examination examination periods Type of examination
Final exam of module at the end of the semester Oral exam

Course type Comment SWS Offer rhythm Workload attendance
Lecture 3 42 h
Exercises 1 14 h

Total attendance time of module 56 h
inf513 - Energy Informatics Practical

Module name: Energy Informatics Practical
Module code: inf513
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Bereichswahlmodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Andreas Hein
 - Jorge Marx Gomez
 - Sebastian Lehnhoff

Module counseling:
- Die im Modul Lehrenden

Prerequisites:
Programming with JAVA

Skills to be acquired in this module:
Successfully completing this lecture will enable the students to mathematically model simple controllable electrical generators and consumers and to simulate them together with appropriate control algorithms within smart grid scenarios. To achieve this goal, students will start with deriving computational models from physical models and evaluate them. In order to manage the integration of control algorithms, students are taught the principles of cosimulation using the "mosaik" smart grid co-simulation framework as an example.

Students will be able to understand and apply distributed, agent-based control schemes to decentralized energy generators and/or consumers. As a result, students are able to analyze the requirements for successful application to real power balancing regarding capacity utilization, robustness, and flexibility.

In addition, students learn the foundations of planning and conducting simulation based experiments as well as the interpretation of the results. Special attention will be paid on establishing a balance between the results' precision and robustness and the necessary effort (design of experiments) in order to gain as much insight into interdependencies with as few experiments as possible.

Professional competence
The students:

- derive and evaluate computational models from physical models
- use the "mosaik" smart grid co-simulation framework
- analyze the requirements for successful applications to real power balancing regarding capacity utilization, robustness, and flexibility
- name the foundations of planning and conducting simulation based experiments as well as the interpretation of the results
- are aware of the balance between the results' precision and robustness and the necessary effort (design of experiments) in order to gain as much insight into interdependencies with as few experiments.

Methodological competence
The students:

- model simple controllable electrical generators and consumers
- simulate simple controllable electrical generators and consumers with appropriate control algorithms within smart grid scenarios
- apply distributed agent-based control schemes to decentralized energy generators and/or consumers
- evaluate simulation results
- search information and look into methods to implement models
- propose hypothesis and check their validity with design of experiments methods

Social competence
The students:

- apply the pair programming development technique
- discuss design decisions
- identify work packages and are responsible for it

Self-competence
The students:
• reflect on their own use of power as a limited resource
• accept and use criticism to develop their own behaviour

Module contents
In this practical course students:

• model controllable, modulating electrical energy generators and consumers,
• put their hands on mosaik (installation, description and configuration of scenarios, conduction of simulations),
• learn the principles of agent-based heuristics for optimization problems in future smart grid scenarios,
• learn about the challenges of implementing agent-based mechanisms (multi-criticality, convergency, quality) on the training,
• learn the foundations for choice and design of simulation based experiments.

Recommended reading
Suggested reading:
Smart Grids:

Multiagentensysteme

• Ferber J.; Kim, S.: "Multiagentensysteme: eine Einführung in die Verteilte Künstliche Intelligenz", Addison-Wesley, 2001

Co-Simulation

Versuchsplanung:

• Kleppmann, W.: "Versuchsplanung", Hanser, 2013
• Klein, B.: "Versuchsplanung - DoE", Oldenbourg, 2011

Links
http://mosaik.offis.de

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
jährlich

Module capacity
unlimited

Information
Elective module in the master specialization area (energy computer science)

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination
examination periods

Type of examination
oral exam

Final exam of module
At the end of the semester
inf520 - Management of Information Systems in Health Care

Module name: Management of Information Systems in Health Care
Module code: inf520
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Bereichswahlmodule

Contact person:
- Module responsibility
 - Michael Sonnenschein
 - Rainer Röhrig
- Module counseling
 - Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:

Professional competence
The students:
- Know healthcare information systems and their functions
- Know clinical software architectures and apply their IT strategies
- Know and apply system integration standards, methods (including medical technology) and risk management
- Know and apply clinical information systems and maintain them
- Know the legal and regulatory framework (including data privacy) for the operation of healthcare IT systems
- Implement simple data analyses on care data
- Know and apply procurement processes and changes

Methodological competence
The students:

Social competence
The students:
- Reflect on and become more familiar with the different hospital roles (IT-manager, IT-employer, hospital supervisors, clinician, manager) and their interests

Self-competence
The students:
- Reflect their solutions by using methods learned in this course and present them appropriately

Module contents

- Basics of the healthcare system
- Basics of the medical documentation
- Healthcare information systems / clinical information systems / intensive care information systems (PDMS)
- PDMS parameters, including interface terminology and semantic standards
- Data privacy and security
- System integration and interoperability (HL7, …)
- Hospital financing / DRG-System: regulatory framework and implementation
- Care data analyses
- Requirements engineering
- Procurement project and risk management

Recommended reading

Links

Language of instruction: German
Duration (semesters): 1 semester
<table>
<thead>
<tr>
<th>Module frequency</th>
<th>jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>written or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total attendance time of module

56 h
inf522 - Information Processing in Bio-Medical Research

Module name: Information Processing in Bio-Medical Research
Module code: inf522
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Rainer Röhrig
- Die im Modul Lehrenden

Prerequisites:
The students are aware of the requirements of biomedical research information processing and technologies. They know, develop and evaluate approaches.

Professional competences:
The students:
- Know the principles of biomedical research and identify resulting requirements and develop appropriate solutions
- Know the regulatory guidelines and assess the suitability of (IT) solutions or develop them
- Plan, apply, evaluate, report and assess IT solution evaluation studies
- Are aware of the biomedical research responsibility and the ethical challenges

Methodological competences:
The students:
- Search literature systematically
- Plan and assess clinical studies
- Develop concepts for a data privacy and GCP conform study management
- Know and apply medical classification systems
- Validate and run software for clinical trials, cohorts and registries
- Plan and assess healthcare IT studies

Social competences:
The students:
- Present solutions/results
- Discuss studies constructively, professionally and appropriately
- Discuss ethical biomedical research problems from different points of view

Self-competences:
The students:
- Reflect their own values and attitudes in the context of medical and biomedical research border areas
- Reflect their self-capacity with regard to the responsibility and the workload during the implementation of studies and the operation of study information systems

Module contents:
- Basics / Biomedical research theory
- Systematic literature research, repositories
- Study schedule and method design
- Biomedical research regulatory framework
- Biomedical research ethics
- IT infrastructure in research / IT components incl. molecular medicine
- (Data) privacy
- Operating of software for clinical trials, cohorts and registries
- Clinical study report standards (Equator-Network), review process
- Evaluation of healthcare IT (GEP-HI and STARE-HI) / evidence based healthcare informatics

Recommended reading
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td>28 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload attendance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>0</td>
</tr>
<tr>
<td>Total attendance</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf523 - Medical Software Engineering

<table>
<thead>
<tr>
<th>Module name</th>
<th>Medical Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf523</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Human-Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Rainer Röhrig</td>
</tr>
<tr>
<td></td>
<td>authorized examiners</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This Module provides the regulatory requirements of medical software. Focus is on software life cycle methods and approaches, the implementation of combined usability- and risk management processes as well as quality management.</td>
</tr>
</tbody>
</table>

Professional competence
The students:

- Know and use obligatory medical software requirements
- Know methods and approaches to develop security-critical medical software and implement them by example
- Know at least one medical application area and its specific professional, organisational and regulatory requirements

Methodological competence
The students:

- Are able to apply risk management methods of socio-technical systems
- Are able to extend their knowledge of new application areas. They are able to handle the obstacles of normative frameworks and software development.

Social competence
The students:

- Realise the importance of communication during the software development process between developer, customer and user of a successful and secure system. Feedback, request, respectful cooperation and empathy of other disciplines' working processes are of great importance.

Self-competence
The students:

- Realise their responsibility as a computer scientist and reflect their impact on patients, medical employers and hospitals (corporates)

Module contents
Content of the Module:
This module provides medical software development processes. The module deals with normative software requirements with the focus on patient privacy and quality management. Contents are the declaration of conformity based on medical product classes and software security classes. The software security is focused on software quality, tests and verification, validation as well as quality and risk management. The software life cycle provides security related systems and software as well as software architecture and different process models.

Recommended reading

Links

Languages of instruction
German, English

Duration (semesters)
1 semester
<table>
<thead>
<tr>
<th>Module frequency</th>
<th>once a year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Module type</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Learning form</td>
<td>2V + 2 Ü</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Medicine for computer scientists, Programming skills / software development / information systems / human machine interaction</td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture periods</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf524 - Introduction to Medicine for Computer Science Students

<table>
<thead>
<tr>
<th>Module name</th>
<th>Introduction to Medicine for Computer Science Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf524</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td>• Michael Sonnenschein</td>
<td></td>
</tr>
<tr>
<td>• Rainer Röhrig</td>
<td></td>
</tr>
<tr>
<td>authorized examiners</td>
<td></td>
</tr>
<tr>
<td>• Die Modulverantwortlichen</td>
<td></td>
</tr>
<tr>
<td>• Die im Modul Lehrenden</td>
<td></td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td>• Die im Modul Lehrenden</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Language of instruction

Duration (semesters)

1 semester

Module frequency

Module capacity

unlmitated

Module level

Modulart

je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
<th>Final exam of module</th>
<th>KL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module

56 h
inf533 - Probabilistic Modelling I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Probabilistic Modelling I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf533</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes| Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 | Master Engineering of Socio-Technical Systems > Systems Engineering
 | Master Informatik > Mastermodule
 | Master Wirtschaftsinformatik > Bereichswahlmodule |
| Contact person | module responsibility |
| | Claus Möbus |
| | authorized examiners |
| | Die im Modul Lehrenden |
| | Module counseling |
| | Die im Modul Lehrenden |
| Prerequisites | Probabilistic Bayesian models are generated with special tools (e.g. BUGS, JAGS, STAN) or programming languages (CHURCH, FIGARO, etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as assistance systems in technical systems like cars or robots. |
| Skills to be acquired in this module | Professional competence |
| | The students: |
| | • learn to map problem to model classes to come up with practical solutions |
| | Methodological competence |
| | The students: |
| | • acquire basic skills in the design, implementation, and identification of probabilistic models with Bayesian methods
 | • acquire knowledge about alternative non-Bayesian machine learning methods |
| | Social competence |
| | The students: |
| | • learn to present and discuss probabilistic theories, methods, and models. |
| | Self-competence |
| | The students: |
| | • reflect and evaluate chances and limitations of probabilistic approaches
 | • learn to deliberate on machine-learning alternatives |
| Module contents | Theories, methods, and examples of Bayesian models with practical applications |
| Recommended reading | Recent eBooks, eTutorials |
| Links | http://www.uni-oldenburg.de/en/computingscience/lcs/probabilistic-programming/ |
| Languages of instruction | German, English |
| Duration (semesters) | 1 semester |
| Module frequency | jährlich |
| Module capacity | unlimited |
| Modulelevel | AS (Akzentsetzung / Accentuation) |
| Modulart | Pflicht o. Wahlpflicht / compulsory or optional |
| Lern-/Lehrform / Type of program | S |
| Vorkenntnisse / Previous knowledge | Basic programming skills |
| Examination | examination periods |
| Final exam of module | Presentation, reflective summary |
inf534 - Probabilistic Modelling II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Probabilistic Modelling II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf534</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 | • Master Informatik > Mastermodule |
| | • Master Wirtschaftsinformatik > Bereichswahlmodule |
| Contact person | module responsibility |
| | • Michael Sonnenschein |
| | • Andreas Hein |
| | • Claus Möbus |
| | Module counseling |
| | • Die im Modul Lehrenden |

Prerequisites

Skills to be acquired in this module

Probabilistic models are generated with special tools (e.g. BUGS, JAGS, STAN) or programming languages (CHURCH, FIGARO, etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as assistance systems in technical systems like cars or robots. In this part of the seminar we read, present, and discuss recent research papers.

Professional competence:
The students:

- Learn to connect problem- with model classes to come up with practical solutions

Methodological competence
The students:

- Acquire advanced skills in the design, implementation, and identification of probabilistic models with Bayesian methods.
- Acquire knowledge about alternative machine learning methods.

Social competence
The students:

- Learn to present and discuss probabilistic theories, methods, and models.

Self-competence
The students:

- Reflect and evaluate chances and limitations of probabilistic approaches
- Learn to deliberate on machine-learning alternatives

Module contents

Theories, methods, and examples of Bayesian models with practical applications

Recommended reading

Recent publications

Links

http://www.uni-oldenburg.de/en/computingscience/lcs/probabilistic-programming/

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

halbjährlich

Module capacity

unlimited

Module level

AS (Akzentsetzung)

Module art

Wahlpflicht

Examination / Type of program

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>seminar talk, reflective written summary</td>
</tr>
</tbody>
</table>
inf535 - Computational Intelligence I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Computational Intelligence I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf535</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person
- module responsibility
 - Michael Sonnenschein
 - Oliver Kramer
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
- Recognise optimisation problems
- Implement simple algorithms of heuristic optimisation
- Critically discuss solutions and selection of methods
- Deepen previous knowledge of analysis and linear algebra

Methodological competence
The students:
- Deepen programming skills
- Apply modelling skills
- Learn about the relation between problem class and method selection

Social competence
The students:
- Cooperatively implement content introduced in lecture
- Evaluate own solutions and compare them with those of their peers

Self-competence
The students:
- Evaluate own skills with reference to peers
- Realize personal limitations
- Adapt own problem solving approaches with reference to required method competences

Module contents
Computational Intelligence comprises intelligent and adaptive methods for optimisation and learning. The module "Computational Intelligence I" concentrates on methods for evolutionary optimisation and heuristic approaches. The exercises introduce and deepen practical aspects of the implementation and algorithmic design, also taking into account application aspects.

Overview of Content:
- foundations of optimisation
- genetic algorithms and evolution strategies
- parameter control and self-adaptation
- runtime analysis
- swarm algorithms
- constrained optimisation
- multi-objective optimisation
- meta-modeling

Recommended reading
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>examination periods</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>At the end of the lecture period</td>
<td></td>
</tr>
<tr>
<td>Written or oral exam</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Offer rhythm</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td>56 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment 2</td>
</tr>
<tr>
<td>SWS 28 h</td>
</tr>
<tr>
<td>Offer rhythm 28 h</td>
</tr>
<tr>
<td>Workload attendance 28 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment 2</td>
</tr>
<tr>
<td>SWS 28 h</td>
</tr>
<tr>
<td>Offer rhythm 28 h</td>
</tr>
<tr>
<td>Workload attendance 28 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total attendance time of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>
inf536 - Computational Intelligence II

Module name
Computational Intelligence II

Module code
inf536

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Informatik > Mastermodule

Contact person
module responsibility
- Oliver Kramer

authorized examiners
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competence
The students:

- Recognise machine learning problems
- Implement simple algorithms of machine learning
- Critically discuss solutions and selection of methods
- Deepen previous knowledge of analysis and linear algebra

Methodological competence
The students:

- Deepen programming skills
- Apply modelling skills
- Learn about the relation between problem class and method selection

Social competence
The students:

- Cooperatively implement content introduced in lecture
- Evaluate own solutions and compare them with those of their peers

Self-competence
The students:

- Evaluate own skills w.r.t. peers
- Realise personal limitations
- Adapt own problem solving approaches w.r.t. required method competences

Module contents
Computational Intelligence comprises intelligent and adaptive methods for optimisation and learning. The module "Computational Intelligence II" concentrates on methods for machine learning and data mining. The exercises introduce and deepen practical aspects of the implementation and algorithmic design, also taking into account application aspects.

Overview of Content:

- Foundations of learning and classification
- Nearest neighbouring methods
- Model selection and parameter tuning
- Regression
- Support vector and kernel methods
- Clustering
- Dimensionality reduction

Recommended reading

- HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J.H.: The Elements of Statistical Learning, Springer 2009
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modul level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>
| **Vorkenntnisse / Previous knowledge** | - inf535 Computational Intelligence I
- Statistics |

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the semester</td>
<td>Written or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td></td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

| **Total attendance time of module** | 56 h |
inf537 - Intelligent Systems

Module name: Intelligent Systems
Module code: inf537
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik

Contact person:
- module responsibility
 - Jürgen Sauer
- Module counseling
 - Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:

Professional competence
The students:

- Name the structure of agent-based systems
- Use problem-solving methods for complex problems
- Characterise the application area of process planning
- Evaluate the suitability of processes regarding to specific problems

Methodological competence
The students:

- Assign problem-solving methods to different problems

Social competence
The students:

- Implement selected methods in small teams

Self-competence
The students:

- Develop own solutions for given problems

Module contents:
A lot of application areas use "intelligent" problem-solving methods. These are the main focus of this lecture. They will be illustrated by examples in order to enhance the students' problem-solving abilities. These include:

- A brief introduction into AI
- Agent systems and
- Solution methods of AI like heuristics, meta-heuristics, soft computing methods.

To apply and foster the contents of the lecture, an intelligent planning system is implemented in practical exercises.

Recommended reading:
Suggested reading:

- Ghallab/ Nau/Traverso: Automated Planning, Morgan Kaufman, 2004

Links:

Languages of instruction:
German, English
Duration (semesters): 1 semester
Module frequency | once a year
Module capacity | unlimited
Module level | AS (Akzentsetzung / Accentuation)
Module type | Pflicht o. Wahlpflicht / compulsory or optional
Lern-/Lehrform / Type of program | V+Ü
Vorkenntnisse / Previous knowledge | Produktionsorientierte Wirtschaftsinformatik
Examination / previous knowledge | Examination periods | Type of examination
Final exam of module | at the end of the lecture period | Exercises and written exam
Course type | Comment | SWS | Offer rhythm | Workload attendance
Lecture | 2 | 28 h
Exercises | 2 | 28 h
Total attendance time of module | 56 h
inf538 - Adaptive Computing

<table>
<thead>
<tr>
<th>Module name</th>
<th>Adaptive Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf538</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik</td>
</tr>
</tbody>
</table>

Contact person

 module responsibility

- Michael Sonnenschein
- Jorge Marx Gomez
- Jürgen Sauer

Module counseling

- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competence

The students:

- Characterise problems that occur during the operation of large-scale operating systems
- Characterise conceptional, technical, economical and organizational problem-solving processes
- Use these concepts to solve problems validly

Methodological competence

The students:

- Describe a current problem area based on information from the internet and literature

Social competence

The students:

- Present their findings on a problem area
- Discuss their results regarding a specific application area

Self-competence

The students:

- Reflect actual concepts with regard to specific application areas

Module contents

Content of the Module:

"Adaptive Computing" deals with the field of concepts and solutions to manage large scale application systems or dynamic data centers. Technically oriented solutions like the configuration of data centers such as the hard- and software virtualization, the high availability, the storage management and the identity management are not the only contributions of Adaptive Computing. Others are organisational aspects of companies, such as personnel planning and service agreements.

This module provides and compiles current topics of Adaptive Computing. The module also presents and evaluates several Adaptive Computing technologies. Current HW-/ SW-concepts of large-scale application systems, strategies, service management and security concepts are specifically included.

The lecture introduces current concepts and solutions for the management of dynamic data centers. Among others, the following subjects are provided:

- IT-Strategy, -Organisation
- ITIL (overview)
- Service-Management Tools (e.g. OTRS)
- Outsourcing
- Security (policies, privacy, data security, safety)
- Spatial design of data centers
- HW-Strategies: Cluster, Storage, ...
- Virtualization
- IdM
- Portals
- Configuration management
- Accounting, performance calculation and evaluation, performance indicators
• SOA, EAI
• Controlling tools, Monitoring
• Solutions: SAP Adaptive Computing

Recommended reading

Suggested reading:

• current company data
• current materials from internet
• Tiemeyer, Ernst: Handbuch IT-Management: Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis, Hanser, 2006

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
jährlich

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>at the end of the semester</td>
<td>Portfolio</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>course and seminar</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Total attendance time of module

56 h
inf584 - Special Topics in 'Energy Informatics' I

Module name: Special Topics in 'Energy Informatics' I
Module code: inf584
ECTS credit points: 6.0 KP
Workload: 180 h
Used in degree programmes: Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Sebastian Lehnhoff
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- Support team process by their abilities

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modulelevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR
Vorkenntnisse / Previous knowledge

Examination
- examination periods
- Type of examination
 - Final exam of module
 - At the end of the lecture period
 - Portfolio or presentation or oral exam
inf585 - Special Topics in 'Energy Informatics' II

Module name: Special Topics in 'Energy Informatics' II
Module code: inf585
ECTS credit points: 6.0 KP
Workload: 180 h
Used in degree programmes: Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Sebastian Lehnhoff
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences:
The students:
- Support team process by their abilities

Self-competences:
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents:
See assigned course description

Recommended reading:
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR
Vorkenntnisse / Previous knowledge:

Examination
- examination periods
- Type of examination
 - Final exam of module: At the end of the lecture period
 - Portfolio or presentation or oral exam
inf586 - Current Topics in 'Energy Informatics' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Energy Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf586</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person
- module responsibility
 - Michael Sonnenschein
 - Sebastian Lehnhoff
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
S or V

Vorkenntnisse / Previous knowledge

182 / 268
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf587 - Current Topics in ‘Energy Informatics’ II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in ‘Energy Informatics’ II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf587</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person
- module responsibility
 - Michael Sonnenschein
 - Sebastian Lehnhoff
- Module counselng
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:

- Communicate with users and experts convincingly

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf588 - Special Topics in 'Medical Informatics' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Medical Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf588</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. „Medizinische Bildverarbeitung“ or „Standard und Systeme für die Kommunikation in der Medizin“

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf589 - Spezielle Themen aus dem Gebiet "IT im Gesundheitswesen" II

Module name: Spezielle Themen aus dem Gebiet "IT im Gesundheitswesen" II
Module code: inf589
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule

Contact person:
- Module responsibility
 - Michael Sonnenschein
 - Andreas Hein
- Module counseling
 - Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences:
The students:
- Support team process by their abilities

Self-competences:
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents:
See assigned course description, e.g. „Medizinische Bildverarbeitung“ or „Standard und Systeme für die Kommunikation in der Medizin“

Recommended reading:
As announced in the according course

Links
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR

Examination / Previous knowledge:
- examination periods
- Type of examination

188 / 268
| Final exam of module | At the end of the lecture period | Portfolio or presentation or oral exam |
inf590 - Current Topics in 'Medical Informatics' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Medical Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf590</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

- module responsibility
 - Michael Sonnenschein
 - Andreas Hein
- authorized examiners
 - Die im Modul Lehrenden

Module counselling

- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

- This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

- See assigned course description

Recommended reading

- As announced in course

Links

Language of instruction

- German

Duration (semesters)

- 1 semester

Module frequency

- unregelmäßig

Module capacity

- unlimited

Modullevel

- AS (Akzentsetzung)

Modulart

- Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S or V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf591 - Aktuelle Themen aus dem Gebiet "IT im Gesundheitswesen" II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Aktuelle Themen aus dem Gebiet "IT im Gesundheitswesen" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf591</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

- module responsibility
 - Michael Sonnenschein
 - Andreas Hein
 - Rainer Röhrig
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

- Language of instruction | German
- Duration (semesters) | 1 semester
- Module frequency | unregelmäßig
- Module capacity | unlimited
- Modullevel | AS (Akzentsetzung)
- Modulart | Wahlpflicht
- Lern-/Lehrform / Type of program | S or V
- Vorkenntnisse / Previous knowledge |
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf594 - Current Topics in 'Learning and Cognitive Systems' I

Module name: Current Topics in 'Learning and Cognitive Systems' I
Module code: inf594
ECTS credit points: 3.0 KP
Workload: 90 h

Used in degree programmes: Master Informatik > Mastermodule

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Claus Möbus
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:

- Communicate with users and experts convincingly

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description, e.g. „Kognitive Modellierung“, „KI und Wissensrepräsentation“

Recommended reading
As announced in course

Links

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulelevel: AS (Akzentsetzung)

Modulart: Wahlpflicht

Lern-/Lehrform / Type of program: S or V

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
Module name: Current Topics in 'Learning and Cognitive Systems' II

Module code: inf595

ECTS credit points: 3.0 KP

Workload: 90 h

Used in degree programmes: Master Informatik > Mastermodule

Contact person:
- Michael Sonnenschein
- Claus Möbus

Module counseling:
- Die im Modul Lehrenden

Prerequisites:
This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module:

Professional competences:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences:
- Communicate with users and experts convincingly

Self-competences:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents:
See assigned course description

Recommended reading:
As announced in course

Links:

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulelevel: AS (Akzentsetzung)

Modularart: Wahlpflicht

Lern-/Lehrform / Type of program: S or V

Vorkenntnisse / Previous knowledge:

196 / 268
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
Module Information

Module Code: inf596
ECTS Credit Points: 6.0 KP
Workload: 180 h
Used in Degree Programmes:
- Master Informatik > Mastermodule

Contact Person
- Module Responsibility: Michael Sonnenschein, Oliver Kramer
- Module Counseling: Die im Modul Lehrenden

Prerequisites

Skills to be Acquired in this Module

This module integrates current developments in the field in adequate study courses. The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological Competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social Competences

The students:

- Support team process by their abilities

Self-Competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module Contents

See assigned course description, e.g. „Medizinische Bildverarbeitung“ or „Standard und Systeme für die Kommunikation in der Medizin“

Recommended Reading

As announced in the according course

Links

Language of Instruction: German
Duration (Semesters): 1 semester
Module Frequency: unregelmäßig
Module Capacity: unlimited
Module Level: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of Program: 2 courses out of V, S, Ü, P, PR

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination Periods</th>
<th>Type of Examination</th>
</tr>
</thead>
</table>

198 / 268
| Final exam of module | At the end of the lecture period | Portfolio or presentation or oral exam |
inf597 - Spezielle Themen aus dem Gebiet "Computational Intelligence" II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Spezielle Themen aus dem Gebiet "Computational Intelligence" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf597</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Oliver Kramer</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:

- Support team process by their abilities

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links
Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination
examination periods
Type of examination
Final exam of module
At the end of the lecture period
Portfolio or presentation or oral exam
inf598 - Current Topics in 'Computational Intelligence' I

Module name Current Topics in 'Computational Intelligence' I
Module code inf598
ECTS credit points 3.0 KP
Workload 90 h
Used in degree programmes • Master Informatik > Mastermodule
Contact person module responsibility
 ▪ Michael Sonnenschein
 ▪ Oliver Kramer
Module counseling
 ▪ Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
 • Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
 • Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 • Identify, structure and solve problems/tasks, also in new or developing subject areas
 • Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 • Are aware of the current limits and contribute to the development of computer science research and technology
 • Discuss and evaluate recent computer science developments

Methodological competences
The students:
 • Examine tasks with technical and research literature, write an academic article and present their solutions academically
 • Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
 • Schedule time processes and resources

Social competences
The students:
 • Communicate with users and experts convincingly

Self-competences
The students:
 • Pursue the overall and special computer science development critically
 • Develop and reflect self-developed hypotheses to theories independently

Module contents See assigned course description
Recommended reading As announced in course
Links
Language of instruction German
Duration (semesters) 1 semester
Module frequency unregelmäßig
Module capacity unlimited
Modullevel AS (Akzentsetzung)
Modulart Wahlpflicht
Lern-/Lehrform / Type of program S or V
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf599 - Aktuelle Themen aus dem Gebiet "Computational Intelligence" II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Aktuelle Themen aus dem Gebiet "Computational Intelligence" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf599</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Oliver Kramer</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description, e.g. „Kognitive Modellierung“, „KI und Wissensrepräsentation“

Recommended reading

As announced in course

Links

Language of instruction German
Duration (semesters) 1 semester
Module frequency unregelmäßig
Module capacity unlimited
Modullevel AS (Akzentsetzung)
Modulart Wahlpflicht
Lern-/Lehrform / Type of program S or V
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf604 - Business Intelligence I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Business Intelligence I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf604</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Informatik > Mastermodule
- Master of Education (Wirtschaftspädagogik) Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik

Contact person
- **module responsibility**
 - Jorge Marx Gomez
- **authorized examiners**
 - Die im Modul Lehrenden

Module counseling
- Lehrende der Informatik

Prerequisites

Skills to be acquired in this module

Objective of the module/skills:
Current module provides basics of business intelligence with focus on enterprises and strong emphasis on data warehousing technologies. Students of the course are provided with knowledge, which reflects current research and development in a data analytic domain.

Professional competence
The students:

- name and recognize the role of business intelligence as part of daily business process
- being able to analyse advantages and disadvantages of different approaches and methods of the data analytics
- and being able to apply them in simple case studies

- obtain theoretical knowledge about data collection and modelling processes, including most applicable approaches and best practices

Methodological competence
The students:

- being able to execute typical tasks of business intelligence, and also being able to deepen knowledge on different approaches and methods

- gain a hands on experience and being able to understand advantages and disadvantages of different methods and

- being able to use obtained knowledge in most efficient ways

Social competence
The students:

- build solutions based on case studies given to the group, for example solving the issue of a factless fact table
- discuss solutions on a technical level
- present obtained case studies solutions as part of the exercises

Self-competence
The students:

- critically review provided data and information

Module contents
Data warehouse technology together with business intelligence are increasingly being used by business in order to get better decision support and enrich ongoing processes with data-rich decisions. Data warehouse technology enables an integration of data from heterogeneous sources, whether business intelligence builds data processing on top of it. For instance, business intelligence allows to build reporting on very large volumes of...
data (including historical) coming primarily from data warehouse.
As part of the current module following contents are taught:

- Definition and scope of business intelligence.
- Procedures and objectives of data warehousing.
- Process of extracting, transforming and loading (ETL) of data.
- Phases of data modeling, data capturing and reporting in conjunction with a plausible case studies/scenarios.
- Prospects for further and evolving topics for business intelligence (e.g. Adaptive Business Intelligence, In-Memory Computing, etc.)
- Introduction to Data Mining.
- Case studies based practical exercises and assessments in order to impart practical knowledge.

Recommended reading

- Marx Gómez, Rautenstrauch, Cissek (2008): Einführung in die Business Intelligence mit SAP NetWeaver 7.0.

Links

http://www.wi-ol.de

Languages of instruction

German, English

Duration (semesters)

1 semester

Module frequency

jährlich

Module capacity

unlimited

Module level

AS (Akzentsetzung)

Modulart

Wahlpflicht

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the lecture period</td>
<td>Written exam max. 120 minutes</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module

56 h
inf605 - Customizing

Module name: Customizing
Module code: inf605
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik

Contact person:
- module responsibility: Jorge Marx Gomez
- authorized examiners: Jorge Marx Gomez
- Module counselling: Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:

After successful completion of the lecture, the students should be able to define and to abstract a business process model from a given specific and modular scenario. In addition, the students will apply a practice oriented customizing along the process chain. The results will be evaluated. The lecture explains customizing with the help of a process chain independently upraise by research questions that need to be adapted by the students. A final documentation reveals the degree of fulfillment and the students point of view on the given scenario.

Professional competence
The students:

- recognize the approach for the realization of customizing.
- expose problems and effects of customizing.
- obtain basic knowledge in the subject of SAP systems.
- receive knowledge of process modelling and process management.

Methodological competence
The students:

- determine and analyse required information.
- prepare the given information for specific target groups.
- destablish an analytical understanding of enterprise processes and enterprise structures.

Social competence
The students:

- work in groups, identify work packages and take on responsibility for the jobs assigned to them.
- discuss and introduce the results on a functional level.

Self-competence
The students:

- reflect their actions on the basis of self defined objectives.
- analyse their own state of knowledge.

Module contents:

Within the lecture the upcoming topics are discussed:

- definition and introduction to customizing
- individual and standard software systems, parametrization and configuration, problems and effects
- domain specific knowledge of SAP, SAP S4/HANA
- introduction to defining process models, BPMN and eEPK
- business process management
- analyze, customize and control of processes
- process and project documentation
Recommended reading

- Körsgen, F: SAP ERP Arbeitsbuch: Grundkurs SAP ERP ECC 6.0 mit Fallstudien. 4 Auflage. E Schmidt Verlag, 2015

Links

http://vba.wi-ol.de

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

jährlich

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

V+Ü

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>at the end of the lecture period</td>
<td>Papers, project or written examination. Announcement at the beginning of the lecture</td>
<td></td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Exercises</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>28 h</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module

56 h
info607 - Business Intelligence II

Module name | Business Intelligence II
Module code | info607
ECTS credit points | 6.0 KP
Workload | 180 h

Used in degree programmes
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik

Contact person

- module responsibility
 - Jorge Marx Gomez
- authorized examiners
 - Jorge Marx Gomez
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
Current module provides advanced business intelligence, data science with focus on enterprises and strong emphasis on big data and data analytics. Students of the course are provided with knowledge, which reflects current research and development in a data analytics domain.

Professional competence
The students:

- name and recognize the role of data analytics / data science as part of a daily business process in a particular company
- able to organize from management perspective data analytics project
- being able to analyse advantages and disadvantages of different approaches and methods of the data analytics and being able to apply them in simple case studies
- obtain theoretical knowledge about data collection and modelling processes, including state of the art approaches and available best practices

Methodological competence
The students:

- being able to execute typical tasks of data analytics, and also being able to proceed deeper with respect to different approaches and methods
- gain a hands on experience and being able to understand advantages and disadvantages of different methods and being able to use obtained knowledge

Social competence
The students:

- build solutions based on case studies given to the group, for example design of regression model based on provided dataset
- discuss solutions on a technical level
- present obtained case studies solutions as part of the exercises

Self-competence
The students:

- critically review provided offered information

Module contents
After current course students will get advanced knowledge in the domains such as business intelligence and data analytics. Besides that, students will have a chance to have a deeper look into related technical fields such as InMemory Computing, Data Mining and Machine Learning, Big Data Processing with Distributed Systems (e.g. Apache Hadoop / Spark) from both, research and practical, perspectives. Students will be provided with real-world experience gather from business intelligence and data science related projects. Materials of the course are believed to be justified with current demands of data analytics market. Thus, providing students with relevant knowledge in order to give them advantages in future job.

Recommended reading

- Jürgen Cleve, Uwe Lämmel (2014): "Data mining" (Deutsch)
- Max Bramer (2013): "Principles of data mining" (English)
- Ian Witten, Eibe Frank, Mark Hall (2011): "Data mining : practical machine learning tools and techniques" (English)
- Jure Leskovec, Anand Rajaraman, Jeffrey Ullman (2014): "Mining of massive datasets" (English)

<table>
<thead>
<tr>
<th>Links</th>
<th>http://www.wi-ol.de/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>BW (Bereichswahlimodul)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>SE according to the announcement at the course start (2 SWS L + 2 SWS E or Blockseminar)</td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
</tr>
</tbody>
</table>
inf650 - Transport Systems

Module name: Transport Systems
Module code: inf650
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik

Contact person:
- Module responsibility: Michael Sonnenschein, Axel Hahn
- Module counseling: Die im Modul Lehrenden

Prerequisites:
Objective of the module/skills:
The Module Transport systems deals with planning and controlling systems of internal and external company logistics as well as public transport. It provides basic knowledge and recent research topics. The focus is on a resource orientated holistic view of company logistics as well as the planning of transport infrastructure. Furthermore, trends such as autonomous vehicles and intelligent transport systems are discussed.

Professional competence
The students:
- Name the basics of planning and controlling company logistics
- Assess transport systems of companies
- Name methods and approaches of computer aided transport systems and classify them
- Characterise software to plan complex logistics

Methodological competence
The students:
- Display topics and concepts of transport systems
- Simulate transport and its systems with appropriate methods

Social competence
The students:
- Work in groups
- Discuss their results appropriately

Self-competence
The students:
- Realise their limits while working on a project containing aspects of modelling and implementation
- Question the presentation of their results

Module contents
Content of the Module:
- Transport and logistics concepts
- Data acquisition of company logistics
- Planning- and simulation software for complex logistics- and transport processes
- Energy- and resource efficient transport systems
- Resource oriented transport cost calculations (e.g. CO2, noise pollution)
- Planning models for transport infrastructure

Recommended reading
Suggested reading:

<table>
<thead>
<tr>
<th>Links</th>
<th>http://wi-ol.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Moduleart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+U</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
<td>Exercises and written exam</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module: 56 h
inf651 - Environmental Management Information Systems I

Module name: Environmental Management Information Systems I
Module code: inf651
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Sustainability Economics and Management > Ergänzungsmodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodulen Bereich Wirtschaftsinformatik

Contact person:
- Module responsibility
 - Jorge Marx Gomez
- Authorized examiners
 - Die im Modul Lehrenden
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module:

Professional competence:
The students:
- are able to classify and explain the sustainability paradigm.
- are aware of the current status of sustainability reporting.
- are able to define and to model material flows.
- have obtained know-how in the field of corporate environmental management information systems (CEMIS).

Methodological competence:
The students:
- implement CEMIS.
- apply different techniques and methods to case studies.
- develop new case studies in teams.

Social competence:
The students:
- are supposed to work in teams and therefore have to identify working packages and have to take on responsibility for the jobs assigned to them.
- present and discuss their own results with the team and the other members of the course.

Self-competence:
The students:
- learn about their own limitations and learn to accept criticism in order to strengthen their own abilities.

Module contents:

This course teaches methods, approaches and techniques in the field of information processing in order to support solutions to problems that arise from companies’ impact on the environment. In particular, ICT supported approaches of production-integrated environmental protection, environmental controlling and reporting are introduced and discussed. In order to enable the integration of such approaches into environmental protection, environmental management and its systems are taught as well.

The content in detail:
- environmental management as a basis for sustainability
- sustainability and material flow management
- strategic environmental management
- eco-controlling life cycle
- characteristics and system architectures of CEMIS
- standard software systems
- environmental accounting systems

Recommended reading

Links
- http://www.wi-ol.de

Language of instruction
- German

Duration (semesters)
- 1 semester

Module frequency
- jährlich

Module capacity
- unlimited

Module level
- AS (Akzentsetzung)

Module type
- Wahlpflicht

Type of program
- V and Ü

Examination
- Final exam of module
 - At the end of the lecture period
 - exercises and written exam (max. 120 min.)

Type of examination
- Final exam of module
 - At the end of the lecture period
 - exercises and written exam (max. 120 min.)

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>28 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>28 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total attendance time of module
- 56 h
inf52 - Production-oriented Business Informatics

<table>
<thead>
<tr>
<th>Module name</th>
<th>Production-oriented Business Informatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf52</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Fach-Bachelor Wirtschaftswissenschaften > Studienrichtung Wirtschaftsinformatik</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>o Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>o Axel Hahn</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>o Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>The module deepens the contents of the modules &132;Wirtschaftsinformatik;&147; and &132;Wirtschaftsinformatik/Informationsmanagement;&147;: The students will be able to contextualise IT systems and their functions in companies. They are able to participate in the implementation of IT systems in companies. The students know the essential tasks of materials management, production planning and controlling, warehousing, acquisition and supply chain management.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competence: The students:</td>
</tr>
<tr>
<td></td>
<td>o Name and differentiate the basics of business informatics and information management</td>
</tr>
<tr>
<td></td>
<td>o Classify IT systems and their functions in companies</td>
</tr>
<tr>
<td></td>
<td>o Name and characterise the the essential tasks of materials management, production planning and controlling, warehousing, acquisition and supply chain management</td>
</tr>
<tr>
<td></td>
<td>Methodological competence: The students:</td>
</tr>
<tr>
<td></td>
<td>o Transfer a holistic development process of production planning and control</td>
</tr>
<tr>
<td></td>
<td>o Implement IT systems in businesses</td>
</tr>
<tr>
<td></td>
<td>Social competence: The students:</td>
</tr>
<tr>
<td></td>
<td>o Participate in implementing IT systems in companies</td>
</tr>
<tr>
<td></td>
<td>o Construct and present computational solutions to groups and within their work group</td>
</tr>
<tr>
<td></td>
<td>o Integrate professional and objective criticism in their own and others' results</td>
</tr>
<tr>
<td></td>
<td>Self-competence: The students:</td>
</tr>
<tr>
<td></td>
<td>o Recognize the planning horizon for IT systems</td>
</tr>
<tr>
<td></td>
<td>o Reflect their role and skills to implement IT systems in businesses</td>
</tr>
<tr>
<td>Module contents</td>
<td>The module "Production-oriented Business Informatics" deals especially with production planning and control processes affected by process planning tasks, as well as classic problems of industrial production. The lecture is focussed on the application of information systems in industrial production companies. Priorities are order flow business processes and PPS-/ERP-Systems. Case studies and demonstrations illustrate the application of these systems.</td>
</tr>
<tr>
<td></td>
<td>Further literature will be announced in the lecture.</td>
</tr>
<tr>
<td>Links</td>
<td>Language of instruction: German</td>
</tr>
<tr>
<td></td>
<td>Duration (semesters): 1 semester</td>
</tr>
<tr>
<td></td>
<td>Module frequency: jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises and written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |
inf653 - ERP Technologies

<table>
<thead>
<tr>
<th>Module name</th>
<th>ERP Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf653</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td>Master Informatik > Mastermodule</td>
<td></td>
</tr>
<tr>
<td>Master of Education (Wirtschaftspädagogik) Informatik > Mastermodule</td>
<td></td>
</tr>
<tr>
<td>Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik</td>
<td></td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td>Michael Sonnenschein</td>
<td></td>
</tr>
<tr>
<td>Jorge Marx Gomez</td>
<td></td>
</tr>
<tr>
<td>authorized examiners</td>
<td></td>
</tr>
<tr>
<td>Jorge Marx Gomez</td>
<td></td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td>Die im Modul Lehrenden</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Learning objectives:
- Generation of understandings into the working approaches and tasks of ERP systems
- Examining components of ERP systems
- Generating knowledge about important aspects of the operation processes of ERP systems, such as data storage and processing, user management, and system maintenance.

Professional competence

- The students:
 - describe ERP systems in compliance with functions and technologies
 - identify state-of-the-art and future architectures of ERP systems
 - discuss the usage of core technologies (also in practical case studies, for example with SAP NetWeaver)

Methodological competence:

- The students:
 - categorize fundamental technologies in combination with other enterprise-wide information systems
 - apply the presented methods in practical contexts

Social Competence:

- The students:
 - construct solutions to given problems in groups
 - present solutions to computing science problems before groups

Self-competence:

- The students:
 - recognize the limits of their capacity in implementing and customizing of business application systems

Module contents

- Overview of the components of ERP systems and their functionality and administration

- In-depth analysis of ERP system architecture under consideration of surface structures and user management in ERP systems, with focus on of data storage, particularly the used data models and database structures, backup and recovery strategies

- Deployment of ERP applications in form of application service providing, including the technical characteristics of this business model, especially Special Administration, delimitation and monitoring tasks for systems, which at the same time be provided several customers
Lecture will be accompanied by SAP case studies.
Recommended reading

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
jährlich

Module capacity
unlimited

Module level
AS (Akzentsetzung)

Module art
Wahlpflicht

Lern-/Lehrform / Type of program
V + Ü

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>end of lecture period</td>
<td>written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module
56 h
inf654 - Mobile Commerce

Module name: Mobile Commerce
Module code: inf654
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master of Education (Wirtschaftspädagogik) Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik

Contact person:
- module responsibility
 - Jorge Marx Gomez
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
Professional competence
The students:
- Define and encompass MC
- Explain the development stages of MC
- Are aware of the current developments within MC and are able to classify them
- Get to know technical essentials, functionalities and standards of wireless ICT
- Assess the fields of application and limitations of wireless ICT
- Examine the relevant mobile devices and their respective operating systems, know their characteristics and evaluate their fields of application
- Examine market participants, assess business models, optimize business processes
- Gain insight into specifics via examples and exercises

Methodological competence
The students:
- Get to know security aspects and specifics of mobile application design
- Prototypically develop an Android application
- Prepare and give presentations
- Develop a concept of a business model for an Android application

Social competence
The students:
- Work on their project in groups of three

Self-competence
The students:
- Reflect their own group-dynamic activities in respect of a mutual goal (successfully finish their project)

Module contents
see above

Recommended reading
Also all materials provided within the lecture.

Links
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: jährlich
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: V, Ü
Vorkenntnisse / Previous knowledge

221 / 268
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>After the lecture.</td>
<td>written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module

56 h
inf655 - IT-Controlling

Module name IT-Controlling
Module code inf655
ECTS credit points 6.0 KP
Workload 180 h
Used in degree programmes
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik

Contact person
module responsibility
- Jorge Marx Gomez
authorized examiners
- Jorge Marx Gomez
Module counseling
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module emphasizes the importance of IT-Controlling within an enterprise. The students gain knowledge on practically orientated technologies in order to leave a better understanding for the application and conversion possibilities of IT-Controlling.

Professional competence
The students:
- name general tasks and functions of IT-Controlling.
- recognize the importance strategical IT-Controlling applications.
- learn strategies and methods of IT-Controlling.
- identify the existence of an IT-Strategy as a pre condition of IT-Controlling.
- know about the risks of IT-Outsourcing.
- use IT-Controlling tools (e.g. information systems, portfolio analysis, benchmarking IT-Reporting).

Methodological competence
The students:
- use their knowledge by independently compiled presentations on recent IT-Controlling subjects.

Social competence
The students:
- discuss their results essentially and appropriately in this subject.
- present their subjects to the group.

Self-competence
The students:
- understand and analyse their own state of knowledge.
- reflect their own effects on groups

Module contents
The employment of information technologies for enterprises is usually a key factor. By the change of our society to an information society, information gains more and more importance and takes a central role within ICT systems. The specifics of the ICT area cannot be supported by the classical economic controlling.
The application of a strategical IT-Controlling becomes more and more important. The result of a study shows that in the meantime in about 80% of the German enterprises an ICT strategy was compiled. However, the study makes also clear, that about two out of three enterprises use no methods of strategical IT-Controlling.
The new discipline of IT-Controlling provides plans and methods to avoid isolated applications.

Recommended reading
- Gadatsch, A: IT-Controlling: Praxiswissen für IT-Controller und Chief-InformationOfficer. Springer Verlag, 2012
- Gadatsch, A, Mayer, E: Masterkurs IT-Controlling: Grundlagen und Praxis für ITController und CIOs- Balanced Scorecard- Portfoliomanagement- Wertbeitrag der ITProjektcontrolling-Kennzahlen
 - IT-Sourcing- IT-Kosten und Leistungsrechnung, 5 Auflage. Springer Vieweg, 2014
<table>
<thead>
<tr>
<th>Links</th>
<th>http://www.wi-ol.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V + Ü</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

Examination

Final exam of module

<table>
<thead>
<tr>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the lecture period</td>
<td>Practical work, papers or written examination. Announcement at the beginning of the lecture.</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>28 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercises</th>
<th></th>
<th>28 h</th>
</tr>
</thead>
</table>

Total attendance time of module

| 56 h |
inf657 - Product Engineering

Module name: Product Engineering
Module code: inf657
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodu... Bereich Wirtschaftsinformatik

Contact person:
- module responsibility
 - Michael Sonnenschein
 - Axel Hahn
 - Die im Modul Lehrenden
- authorized examiners
 - Die im Modul Lehrenden
- Module counseling
 - Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:
Focus of this module is to learn and apply the product engineering process. A project will enable the students to design a product from the idea to the prototype. More specifically, a systematic, partial domain-specific, approach to solve technical problems and aspects of project management will be learned.

Regular meetings are used to train the presentation capabilities of the students and to schedule working packages within the teams.

Professional competence
The students:
- Learn and try out the handling of virtual and physical prototypes
- Learn and try out the construction and validation of virtual prototypes with the aid of CAD-applications
- Learn and combine different basic development concepts from the mechanical engineering, microelectronics, control engineering and software engineering

Methodological competence
The students:
- Learn and try out project management concepts
- Learn and recognise the connections of different development concepts from different fields, e.g. mechanical engineering, control engineering, microelectronics and software engineering
- Develop own products with creativity techniques
- Schedule and organise the product development supported by project management techniques independently
- Learn the systematic refining of their own product idea with SysML
- Design and test products with state-of-the-art CAD-applications

Social competence
The students:
- Impart their structure and mode of action to other people
- Develop their own products in small teams
- Present their solutions to groups
- Integrate criticism to their solutions
- Support other groups by giving appropriate criticism

Self-competence
The students:
- Recognise and reflect their own limitations to get familiar and to plan a project in an unknown field (e.g. maritime construction/industries)

Module contents:
This module is a lecture accompanied by a hands-on project. The students work on one product development task. The product development starts with the idea-finding/brainstorming process which is used to create a digital product concept. During the semester a digital prototype will be created and validated by its initial requirements. Finally, a physical prototype is produced with a 3D-Printer (Rapid Prototyping). The progress of the project has...
to be documented and presented at different milestones.

<table>
<thead>
<tr>
<th>Recommended reading</th>
<th>Ehrfenspiel (2003): Integrierte Produktentwicklung</th>
</tr>
</thead>
</table>

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Information</td>
<td>The lecture material contains English parts</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V + Ü</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous knowledge</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Portfolio; exercises & project</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>28 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>28 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Total attendance time of module | 56 h |</p>
<table>
<thead>
<tr>
<th>inf658 - Practice Business Informatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
</tr>
<tr>
<td>Module code</td>
</tr>
<tr>
<td>ECTS credit points</td>
</tr>
<tr>
<td>Workload</td>
</tr>
</tbody>
</table>
| **Used in degree programmes** | Fach-Bachelor Wirtschaftswissenschaften > Studienrichtung Wirtschaftsinformatik
| | Master Informatik > Mastermodule
| | Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik | |
| **Contact person** | |
| **Prerequisites** | |
| **Skills to be acquired in this module** | |
| **Module contents** | |
| **Recommended reading** | |
| **Links** | |
| **Languages of instruction** | German, English |
| **Duration (semesters)** | 1 semester |
| **Module frequency** | |
| **Module capacity** | unlimited |
| **Modullevel** | --- |
| **Modulart** | je nach Studiengang Pflicht oder Wahlpflicht |
| **Lern-/Lehrform / Type of program** | |
| **Vorkenntnisse / Previous knowledge** | |
| **Examination** | examination periods | Type of examination |
| **Final exam of module** | | RA |
inf659 - Environmental Management Information Systems II

Module name: Environmental Management Information Systems II
Module code: inf659
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Informatik > Mastermodule
- Master Sustainability Economics and Management > Ergänzungsmodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik

Contact person:
- Module responsibility: Jorge Marx Gomez
- Authorized examiners: Jorge Marx Gomez
- Module counseling: Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:
This course aims at examining emerging research questions in the field of corporate environmental management information systems (CEMIS). After finishing this course, the students will have extensive knowledge regarding Business Environmental Informatics. In addition, they will be aware of recent research topics and challenges as well as relevant software solutions and practical projects.

Professional competence
The students:
- will obtain extensive knowledge in the field of CEMIS.
- know emerging research questions and challenges as well as software solutions and projects.

Methodological competence
The students:
- find their own solutions or apply already existing approaches to new and unsolved questions in the field of CEMIS.
- capture required data, analyse it and present it to their team or the whole group.

Social competence
The students:
- are supposed to work in teams and therefore have to identify working packages and have to take on responsibility for the jobs assigned to them.
- present and discuss their own results with the team and the other members of the course.

Self-competence
The students:
- learn about their own limitations and learn to accept criticism in order to strengthen their own abilities.

Module contents:
A strong social pressure forces enterprises to question their current way of implementing their business and to include different aspects of sustainability into their strategies and operational actions. Such a rethinking of one's business is supported by corporate environmental management information systems. Such systems aim at optimising the energy and resource usage, emission and waste minimisation as well as production integrated environmental protection. Of course they support the fulfillment of legal requirements such as waste management or hazardous material handling.

The module will cover:
- recent and emerging research questions and topics related to the field of CEMIS as well as Business Environmental Informatics.
- discussion and hands-on experience of standard software systems and newly established solutions.
- applying the knowledge obtained to the definition of new as well as on solving new case studies.

Recommended reading:

Hershey (PA), London

Rautenstrauch, C. (1999), Betriebliche Umweltinformationssysteme, Springer-Verlag

Links http://www.wi-ol.de
Languages of instruction German, English
Duration (semesters) 1 semester
Module frequency jährlich
Module capacity unlimited
Information Type and language of program will be announced prior to the beginning of the course.
Modullevel AS (Akzentsetzung)
Modulart je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program V (2 SWS), Ü (2 SWS) or SE announced at the beginning of the lecture period (2SWS V + 2 SWS Ü oder block seminar)
Vorkenntnisse / Previous knowledge
Final exam of module examination periods Type of examination
Course type usually 2 weeks after the end of the lecture period seminar paper and presentation or term paper
Lecture Comment SWS Offer rhythm Workload attendance
Exercises 2 28 h
Total attendance time of module 56 h
Lecture 2 28 h
Exercises 2 28 h
Total attendance time of module 56 h
inf660 - IKT-gestützte Nachhaltigkeitsberichterstattung

Module name
IKT-gestützte Nachhaltigkeitsberichterstattung

Module code
inf660

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Fach-Bachelor Wirtschaftswissenschaften > Studienrichtung Wirtschaftsinformatik
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Languages of instruction
German, English

Duration (semesters)
1 semester

Module frequency

Module capacity
unlimited

Modullevel
AC (Aufbaucurriculum / Composition)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Course type</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Portfolio oder Projekt</td>
<td></td>
</tr>
</tbody>
</table>

Offer rhythm

<table>
<thead>
<tr>
<th>Course type</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SunSem and WinSem</td>
</tr>
<tr>
<td>Exercise or internship</td>
<td>2</td>
<td>SunSem and WinSem</td>
</tr>
</tbody>
</table>

Total attendance time of module
56 h
inf661 - Digitale Transformation

<table>
<thead>
<tr>
<th>Module name</th>
<th>Digitale Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf661</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Fach-Bachelor Wirtschaftswissenschaften > Studienrichtung Wirtschaftsinformatik</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AC (Aufbaucurriculum / Composition)</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf663 - Application Area Maritime

Module name
Application Area Maritime

Module code
inf663

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Fach-Bachelor Wirtschaftswissenschaften > Studienrichtung Wirtschaftsinformatik
- Master Informatik > Mastermodule

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Languages of instruction
German, English

Duration (semesters)
1 semester

Module frequency

Module capacity
unlimited

Modulart

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Final exam of module

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SunSem and WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SunSem and WinSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module
56 h
inf690 - Special Topics in 'Business Informatics' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Business Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf690</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○ Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>○ Axel Hahn</td>
</tr>
<tr>
<td></td>
<td>○ Jorge Marx Gomez</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○ Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>○ Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>○ Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>○ Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>○ Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>○ Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>○ Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td></td>
<td>Methodological competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>○ Evaluate and apply tools, technology and methods sophisticatedly</td>
</tr>
<tr>
<td></td>
<td>○ Combine new and original approaches and methods creatively</td>
</tr>
<tr>
<td></td>
<td>○ Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>Social competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>○ Support team process by their abilities</td>
</tr>
<tr>
<td></td>
<td>Self-competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>○ Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>○ Implement innovative professional activities effectively and independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>2 courses out of V, S, Ü, P, PR</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf691 - Special Topics in 'Business Informatics' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Business Informatics' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf691</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>- Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>- Master Wirtschaftsinformatik > Akzentsetzungsmodul</td>
</tr>
<tr>
<td></td>
<td>Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>- Jorge Marx Gomez</td>
</tr>
<tr>
<td></td>
<td>- Axel Hahn</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>- Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Module contents

See assigned course description

Recommended reading

As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>2 courses out of V, S, Ü, P, PR</td>
</tr>
</tbody>
</table>

Examination / Previous knowledge

| Examination | examination periods | Type of examination |
| Final exam of module | At the end of the lecture period | Portfolio or presentation or oral exam |
inf692 - Special Topics in 'Business Informatics' III

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Business Informatics' III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf692</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | Master Informatik > Mastermodule
 | Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik |
| Contact person | module responsibility
 | ○ Jorge Marx Gomez
 | ○ Axel Hahn
 | ○ Jürgen Sauer
 | Module counseling
 | ○ Die im Modul Lehrenden |
| Prerequisites | This module integrates current developments in the field in adequate study courses. |
| Skills to be acquired in this module | Professional competences
 | The students:
 | ○ Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
 | ○ Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 | ○ Identify, structure and solve problems/tasks, also in new or developing subject areas
 | ○ Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 | ○ Are aware of the current limits and contribute to the development of computer science research and technology
 | ○ Discuss and evaluate recent computer science developments
 | Methodological competences
 | The students:
 | ○ Evaluate and apply tools, technology and methods sophisticatedly
 | ○ Combine new and original approaches and methods creatively
 | ○ Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
 | Social competences
 | The students:
 | ○ Support team process by their abilities
 | Self-competences
 | The students:
 | ○ Pursue the overall and special computer science development critically
 | ○ Implement innovative professional activities effectively and independently
| Module contents | See assigned course description |
| Recommended reading | As announced in course |
| Links | Language of instruction | German
 | Duration (semesters) | 1 semester
 | Module frequency | unregelmäßig
 | Module capacity | unlimited
 | Modullevel | AS (Akzentsetzung)
 | Modulart | Wahlpflicht
 | Lern-/Lehrform / Type of program | 2 courses out of V, S, Ü, P, PR
<pre><code> | Vorkenntnisse / Previous knowledge |
</code></pre>
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf693 - Special Topics in 'Business Informatics' IV

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Business Informatics' IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf693</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| **Used in degree programmes** | • Master Informatik > Mastermodule
• Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik |
| **Contact person** | module responsibility
• Jorge Marx Gomez
• Axel Hahn
• Jürgen Sauer
Module counseling
• Die im Modul Lehrenden |
| **Prerequisites** | This module integrates current developments in the field in adequate study courses. |
| **Skills to be acquired in this module** | Professional competences
The students:
• Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
• Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
• Identify, structure and solve problems/tasks, also in new or developing subject areas
• Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
• Are aware of the current limits and contribute to the development of computer science research and technology
• Discuss and evaluate recent computer science developments |
| **Methodological competences** | The students:
• Evaluate and apply tools, technology and methods sophisticatedly
• Combine new and original approaches and methods creatively
• Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research |
| **Social competences** | The students:
• Support team process by their abilities |
| **Self-competences** | The students:
• Pursue the overall and special computer science development critically
• Implement innovative professional activities effectively and independently |
<p>| Module contents | See assigned course description |
| Recommended reading | As announced in course |
| Links | |
| Language of instruction | German |
| Duration (semesters) | 1 semester |
| Module frequency | unregelmäßig |
| Module capacity | unlimited |
| Modulelevel | AS (Akzentsetzung) |
| Modulart | Wahlpflicht |
| Lern-/Lehrform / Type of program | 2 courses out of V, S, Ü, P, PR |
| Vorkenntnisse / Previous knowledge | 239 / 268 |</p>
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf694 - Current Topics in 'Business Informatics' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Business Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf694</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Informatik > Mastermodule
 | • Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik |
| Contact person | module responsibility
 | • Jorge Marx Gomez
 | • Axel Hahn
 | Module counseling
 | • Die im Modul Lehrenden |

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction | German
Duration (semesters) | 1 semester
Module frequency | unregelmäßig
Module capacity | unlimited
Modulelevel | AS (Akzentsetzung)
Modulart | Wahlpflicht
Lern-/Lehrform / Type of program | S or V
Vorkenntnisse / Previous knowledge |
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf695 - Current Topics in 'Business Informatics' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Business Informatics' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf695</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>• Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Jorge Marx Gomez</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>• Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>• Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>• Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>• Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>• Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td></td>
<td>Methodological competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>• Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>• Schedule time processes and resources</td>
</tr>
<tr>
<td></td>
<td>Social competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Communicate with users and experts convincingly</td>
</tr>
<tr>
<td></td>
<td>Self-competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>• Develop and reflect self-developed hypotheses to theories independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td>Language of instruction: German</td>
</tr>
<tr>
<td></td>
<td>Duration (semesters): 1 semester</td>
</tr>
<tr>
<td></td>
<td>Module frequency: unregelmäßig</td>
</tr>
<tr>
<td></td>
<td>Module capacity: unlimited</td>
</tr>
<tr>
<td></td>
<td>Modulelevel: AS (Akzentsetzung)</td>
</tr>
<tr>
<td></td>
<td>Modulart: Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Lern-/Lehrform / Type of program: S or V</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf696 - Current Topics in 'Business Informatics' III

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Business Informatics' III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf696</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Akzentsetzungsmodule Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>- Jorge Marx Gomez</td>
</tr>
<tr>
<td></td>
<td>- Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>- Axel Hahn</td>
</tr>
<tr>
<td></td>
<td>- Jürgen Sauer</td>
</tr>
<tr>
<td>Module counseling</td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td></td>
<td>Methodological competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>Schedule time processes and resources</td>
</tr>
<tr>
<td></td>
<td>Social competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Communicate with users and experts convincingly</td>
</tr>
<tr>
<td></td>
<td>Self-competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>Develop and reflect self-developed hypotheses to theories independently</td>
</tr>
</tbody>
</table>

<p>| Module contents | See assigned course description |
| Recommended reading | As announced in the according course |
| Links | |
| Language of instruction | German |
| Duration (semesters) | 1 semester |
| Module frequency | unregelmäßig |
| Module capacity | unlimited |
| Modullevel | AS (Akzentsetzung) |
| Modulart | Wahlpflicht |</p>
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S or V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf697 - Current Topics in 'Business Informatics' IV

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Business Informatics' IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf697</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Akzentsetzungsmodul Bereich Wirtschaftsinformatik</td>
</tr>
</tbody>
</table>

Contact person

- module responsibility
 - Jorge Marx Gomez
 - Michael Sonnenschein
 - Axel Hahn
 - Jürgen Sauer

Module counseling

- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in the according course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf701 - Computer Science Education II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Computer Science Education II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf701</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>• Master of Education (Gymnasium) Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>• Master of Education (Haupt- und Realschule) Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Ira Diethelm</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• (Re-)construct the knowledge of computer science by the method of didactical reduction</td>
</tr>
<tr>
<td></td>
<td>• Differentiate the development of computer science and evaluate this development with current trends for class</td>
</tr>
<tr>
<td></td>
<td>• Select computer science education approaches for lesson planning, organisation and implementation</td>
</tr>
<tr>
<td></td>
<td>Methodological competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• (Re-)construct core concepts of lesson planning for computer science education requirements</td>
</tr>
<tr>
<td></td>
<td>Social competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Present self-developed lesson plans and lesson materials</td>
</tr>
<tr>
<td></td>
<td>• Discuss lesson plans regarding computer science education concepts</td>
</tr>
<tr>
<td></td>
<td>• Accept opinions and criticism</td>
</tr>
<tr>
<td></td>
<td>• Provide constructive feedback</td>
</tr>
<tr>
<td></td>
<td>Self-competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Adapt computer science education concepts for lesson planning</td>
</tr>
<tr>
<td></td>
<td>• Reflect on their self-perception with regard to the conception of computer science education</td>
</tr>
<tr>
<td>Module contents</td>
<td>The lecture will focus on the requirements and challenges of computer science education in grammar school (German: Gymnasium). Main focus:</td>
</tr>
<tr>
<td></td>
<td>• Didactical (re-)construction of computer science knowledge, especially its didactical reduction</td>
</tr>
<tr>
<td></td>
<td>• Didactical categorisation of computer science and the development, importance and evaluation of computer science in school</td>
</tr>
<tr>
<td></td>
<td>• Scheduling, organisation and implementation of computer science in class</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modularart</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>
Lern-/Lehrform / Type of program

| V + Ü |

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>End of lecture period</td>
<td>Exercise and und 1 seminar paper or 1 oral exam</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WinSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WinSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module

| 56 h |
inf703 - Computer Science Education III

<table>
<thead>
<tr>
<th>Module name</th>
<th>Computer Science Education III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf703</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Informatik > Mastermodule
 | • Master of Education (Gymnasium) Informatik > Mastermodule |
| Contact person | module responsibility
 | • Ira Diethelm
 | Module counseling
 | • Die im Modul Lehrenden |
| Prerequisites | The students:
 | - Know research methods from the computer science education field and apply these methods exemplary
 | - Are able to verify computer science education approaches and develop those approaches
 | - Characterise computer science education approaches by their effects to the lesson content, methods and tools.
 | Professional competence
 | The students:
 | • Characterise computer science education research methods
 | • Analyse research issues with computer science education research methods
 | • Differentiate computer science education concepts and their effects on lesson content, teaching methods and tools |
| Methodological competence | The students:
 | • Transfer the research methods acquired on different research issues and adjust them appropriately
 | • Develop research theories, hypotheses and prove them on new contexts |
| Social competence | The students:
 | • Discuss research methods acquired from other students and lecturers
 | • Present research methods and accept or provide appropriate criticism |
| Self-competence | The students:
 | • Include the presented research methods into their plans and activities to prove their hypotheses
 | • Reflect their self-perception with regard to the research methods of computer science education |

| Module contents | Subject of the module:
 | • Computer science education research methods
 | • The purpose of theoretically developed specific lessons
 | • Approaches for the evaluation of computer science education or computer science education concepts |

<p>| Links |

| Language of instruction | German |
| Duration (semesters) | 1 semester |
| Module frequency | jährlich |
| Module capacity | unlimited |
| Modulelevel | AS (Akzentsetzung) |</p>
<table>
<thead>
<tr>
<th>Modulart / Type of program</th>
<th>V,S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
</tr>
</tbody>
</table>
inf705 - Practical in Computer Science Education

<table>
<thead>
<tr>
<th>Module name</th>
<th>Practical in Computer Science Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf705</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>● Ira Diethelm</td>
</tr>
<tr>
<td></td>
<td>● Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Professional competence

The students:

- Know hard- and software system engineering approaches and use them in practice
- Make a qualified and contextual choice of hard- and software designing approaches
- Characterise and consider challenges of soft- and hardware systems in education

Methodological competence

The students:

- Know engineering approaches and use them in new contexts
- Evaluate decision making concepts and use them in different domains

Social competence

The students:

- Cooperate with team members during the development process
- Recognize package tasks and resume their responsibilities
- Analyse team conflicts and resolve them
- Document the software development process in a team
- Moderate team meetings and decision making processes appropriately

Self-competence

The students:

- Reflect their self-perception with regard to the implementation of software systems

Module contents

A hard- or software system for education will be designed in this practical course.

The requirements analysis of hard- or software systems and the dealing with customers are the main topics of this practical course.

Recommended reading

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

jährlich

Module capacity

unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

P

Vorkenntnisse / Previous knowledge

Examination

examination periods

at the end of the semester

Type of examination

Practical implementation, presentation and oral exam
inf710 - Special Topics in 'Computer Science Education' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Computer Science Education' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf710</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Ira Diethelm</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

- Support team process by their abilities

Self-competences

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

- **Language of instruction**: German
- **Duration (semesters)**: 1 semester
- **Module frequency**: unregelmäßig
- **Module capacity**: unlimited
- **Modullevel**: AS (Akzentsetzung)
- **Modulart**: Wahlpflicht
- **Lern-/Lehrform / Type of program**: 2 courses out of V, S, Ü, P, PR

Examination

<table>
<thead>
<tr>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the lecture period</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>

254 / 268
inf711 - Spezielle Themen aus dem Gebiet "Informatik in der Bildung" II

Module name | Spezielle Themen aus dem Gebiet "Informatik in der Bildung" II
Module code | inf711
ECTS credit points | 6.0 KP
Workload | 180 h
Used in degree programmes | Master Informatik > Mastermodule

Contact person

- module responsibility
 - Ira Diethelm
 - Die im Modul Lehrenden

- authorized examiners
 - Ira Diethelm
 - Die im Modul Lehrenden

- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate
 computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply
 computer science methods for solutions and research

Social competences
The students:

- Support team process by their abilities

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

Language of instruction | German
Duration (semesters) | 1 semester
Module frequency | unregelmäßig
Module capacity | unlimited
Module level | AS (Akzentsetzung)
Modulart | Wahlpflicht
Lern-/Lehrform / Type of program | 2 courses out of V, S, Ü, P, PR
<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
</tbody>
</table>
inf712 - Aktuelle Themen aus dem Gebiet "Informatik in der Bildung" I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Aktuelle Themen aus dem Gebiet "Informatik in der Bildung" I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf712</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Ira Diethelm</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td></td>
<td>authorized examiners</td>
</tr>
<tr>
<td></td>
<td>• Ira Diethelm</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel: AS (Akzentsetzung)

Modulart: Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S or V</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf713 - Aktuelle Themen aus dem Gebiet "Informatik in der Bildung" II

Module name
Aktuelle Themen aus dem Gebiet "Informatik in der Bildung" II

Module code
inf713

ECTS credit points
3.0 KP

Workload
90 h

Used in degree programmes
- Master Informatik > Mastermodule

Contact person
module responsibility
- Ira Diethelm
Module counseling
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
S or V

Vorkenntnisse / Previous knowledge

Examination

examination periods

<table>
<thead>
<tr>
<th>Type of examination</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf950 - Interdisziplinäres Modul I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Interdisziplinäres Modul I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf950</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodul
 | Master Informatik > Mastermodule |

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Languages of instruction

Duration (semesters) | 1 semester

Module frequency

Module capacity | unlimited

Modulelevel | BC (Basiscurriculum / Base curriculum)

Modulart | je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Examination periods

Type of examination

Final exam of module

Portfolio oder Referat oder mündliche Prüfung oder Klausur.
inf951 - Interdisziplinäres Modul II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Interdisziplinäres Modul II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf951</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>- Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Languages of instruction

Duration (semesters) 1 semester

Module frequency

Module capacity unlimited

Modullevel BC (Basiscurriculum / Base curriculum)

Modulart je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination examination periods Type of examination

Final exam of module Portfolio oder Referat oder mündliche Prüfung oder Klausur.
mat996 - Introduction to Numerical Analysis

<table>
<thead>
<tr>
<th>Module name</th>
<th>Introduction to Numerical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mat996</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fach-Bachelor Wirtschaftsinformatik > Aufbaumodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Andreas Stein</td>
</tr>
<tr>
<td></td>
<td>Alexey Chernov</td>
</tr>
<tr>
<td></td>
<td>Frank Schöpfer</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>4</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
</tr>
</tbody>
</table>
Introduction to Probability and Statistics

<table>
<thead>
<tr>
<th>Module name</th>
<th>Introduction to Probability and Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mat997</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

Prerequisites

Skills to be acquired in this module

Module contents

Recommended reading

Links

Languages of instruction

- **Duration (semesters)**: 1 semester

Module frequency

- **Module capacity**: unlimited

Modulart

- je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Final exam of module

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SumSem</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SumSem</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total attendance time of module: 56 h
Abschlussmodul

mam - Master Thesis and Colloquium

<table>
<thead>
<tr>
<th>Module name</th>
<th>Master Thesis and Colloquium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mam</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Informatik > Abschlussmodul</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td>Michael Sonnenschein</td>
<td></td>
</tr>
<tr>
<td>Andreas Hein</td>
<td></td>
</tr>
<tr>
<td>Die im Modul Lehrenden</td>
<td></td>
</tr>
<tr>
<td>Module counselling</td>
<td></td>
</tr>
<tr>
<td>Die im Modul Lehrenden</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

The students prove that they are able to process and solve complex computer science tasks based on gained scientific knowledge and applied research methods. The students successfully implement a task especially by using their acquired professional and methodological knowledge and their professional and social competences. The accompanying seminar is used to discuss the master’s thesis methodically and content-related. During the seminar the exchange of research and practical experience fosters the students’ ability to discuss and evaluate their thesis with other students and experts. The master’s thesis is finished by a colloquium.

Professional competence

The students:

- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Design solutions for complex, possibly vaguely defined or unusual computer science tasks/problems and evaluate these with reference to state of the art computer science and technology
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Relate knowledge from different disciplines and apply this new knowledge in complex situations
- Develop complex computer systems, processes and datamodels
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competence

The students:

- Identify and develop one or more solutions
- Evaluate and apply tools, technology and methods sophisticatedly
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Schedule processes and resources
- Apply project management techniques
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competence

The students:

- Communicate with users and experts convincingly
- Take reasonable decisions

Self-competence

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently
- Recognise their abilities and extend them purposefully
- Reflect their self-perception and actions with regard to professional, methodological and social aspects
- Develop and reflect self-developed hypotheses to theories independently
- Work in their field independently

<table>
<thead>
<tr>
<th>Module contents</th>
<th>Independently researched scientific work. The research findings will be presented and discussed in a master's thesis colloquium.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>Abschlussmodul (Abschlussmodul)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S MA+S</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Master's thesis, presentation and discussion.</td>
</tr>
</tbody>
</table>