Kernmodule

inf900 - Group Project

<table>
<thead>
<tr>
<th>Module name</th>
<th>Group Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf900</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>24.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>720 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
</tbody>
</table>
 - Master Eingebettete Systeme und Mikrorobotik > Kernmodule
 - Master Informatik > Kernmodule
 - Master Wirtschaftsinformatik > Kernmodule
| Contact person | module responsibility
 - Die im Modul Lehrenden
 - authorized examiners
 - Die im Modul Lehrenden |

Prerequisites

Skills to be acquired in this module

The students get familiar with different software development aspects in a team. Apart from software engineering knowledge and skills they develop key competences like project management, teamwork, problem solving competence and conflict management.

Additionally, students develop special knowledge, skills and competences from the project group topic.

Professional competence
The students:

- characterise and apply computer science basics (algorithms, data structures, programming, basics of practical, technical and theoretical computer science)
- define and describe essential mathematical, logical and physical basics of computer science
- define and illustrate the core disciplines of computer science (theoretical, practical and technical computer science)

Methodological competence
The students:

- examine problems, use formal methods to phrase and analyze them appropriately
- evaluate problems by the use of technical and scientific literature
- reflect on a scientific topic and write a scientific seminar paper under guidance and present their findings

Social competence
The students:

- integrate criticism into their own actions
- respect team decisions
- communicate with users and experts convincingly

Self-competence
The students:

- take on project management tasks
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently
- recognise their abilities and extend them purposefully
- reflect their self-perception and actions with regard to professional, methodological and social aspects
- develop and reflect self-developed hypotheses to theories independently
- work in their field independently

Module contents

Cooperative development of a large-scale computer science project. This project general includes the (further) development of a hard or software system.

Recommended reading

According to the assigned task
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
<td></td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>2 semester</td>
<td></td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>Modullevel</td>
<td>BC (Basiscurriculum / Base curriculum)</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
<td></td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>- Programmierkurs
 - Softwaretechnik
 - Soft Skills</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Active involvement, presentation, final report, project assessment</td>
</tr>
</tbody>
</table>
Akzentsetzungsmodule

inf100 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Module name</th>
<th>Human Computer Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf100</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Informatik > Mastermodule
- Master Wirtschaftsinformatik > Bereichswahlmodule

Contact person

module responsibility
- Susanne Boll-Westermann
- Die im Modul Lehrenden

authorized examiners
- Susanne Boll-Westermann
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competence

The students:

- Name the human-computer interaction core principles
- Characterise the basic elements of the human-centered design of interactive systems

Methodological competence

The students:

- Comprehend context of use and user requirements of human-machine interfaces
- Design, develop and evaluate human-machine interfaces
- Conduct experiments with their prototypes

Social competence

The students:

- Implement human-computer interfaces in practical hands-on projects in teams
- Evaluate human-machine interfaces with potential users
- Develop and present solutions for Human-Computer Interaction related problems
- Integrate technical and factual comments into own results

Module contents

The module introduces the field of human-computer interfaces and their historical context. Moreover, it shows motivating examples of human-computer interaction. The module covers the core principles of human-computer interaction. In detail, the module deals with the design concepts of interactive systems: context of use, requirements and task analysis, human perception capabilities, design process, usability, prototyping and evaluation. During the practical project a concrete human-computer interface will be designed, developed and evaluated according to these concepts.

Recommended reading

- Markus Dahm, Grundlagen der Mensch Computer-Interaktion, Pearson, 2006
- Literature in the reserve shelf in the university bibliography. Link list in Stud.IP.

Links

- medien.informatik.uni-oldenburg.de/lehre

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

once a year

Module capacity

unlimited

Modullevel

AS (Akzentsetzung / Accentuation)
Modulart	Pflicht o. Wahlpflicht / compulsory or optional
Lern-/Lehrform / Type of program | V+P
Vorkenntnisse / Previous knowledge | Basic programming skills

<table>
<thead>
<tr>
<th>Examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Practical group project which progress has to be presented regularly during the tutorials. Oral exam on the topics of the lecture. Practical project and oral exam count 50% each to the final grade. Both practical project and oral exam have to be passed individually.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td>2</td>
<td></td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
<td></td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
inf105 - Fault Tolerance in Distributed Systems

<table>
<thead>
<tr>
<th>Module name</th>
<th>Fault Tolerance in Distributed Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf105</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

- module responsibility
 - Oliver Theel
 - Die im Modul Lehrenden

Authorized examiners

- Die im Modul Lehrenden
- Die Modulverantwortlichen

Module counseling

- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

- This module provides knowledge of fault-tolerant distributed systems. The terminology, structure, conception, core challenges and related implementation concepts will be covered in detail.

 Professional competence
 - The students:
 - Assess what a fault-tolerant distributed system is and develop awareness of its capabilities
 - Name and discuss common implementations of fault-tolerant distributed systems

 Methodological competence
 - The students:
 - Reflect the implementation challenges of a distributed system
 - Are able to adapt and evolve implementation concepts of fault-tolerant distributed systems in new contexts

 Social competence
 - The students:
 - Solve problems in small teams
 - Present their solutions to the members of the tutorial
 - Discuss their different solutions with members of the tutorial

 Self-competence
 - The students:
 - Accept criticism
 - Question their initially applied methods for problem solving
 - Question their initial solutions in the light of newly learned methods

Module contents

1) Fault, Error, Failure
2) Failure semantics, Fault tolerance
3) Byzantine agreement protocols
4) Stable storage
5) Fail-stop processors
6) Atomic commit protocols
7) Classification of replication control schemes
 - pessimistic vs. optimistic
 - semantic vs. syntactic
 - static vs. dynamic
8) Consistency notions
9) Quality criteria
10) Survey of replication control schemes
11) Design of replication control schemes
12) Underlying frameworks
13) Replication in practice

Recommended reading

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
jährlich

Module capacity
unlimited

Information
connectet with:
Betriebssysteme 1 und 2
Betriebssysteme-Praktikum
Verteilte Betriebssysteme

Module level
AS (Akzentsetzung / Accentuation)

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program
V+S or V+Ü

Vorkenntnisse / Previous knowledge
Verteilte Betriebssysteme

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of lecture period</td>
<td>written exam or oral exam or practical work</td>
<td></td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>seminar or exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>2</td>
<td>WinSem</td>
</tr>
<tr>
<td>2</td>
<td>WinSem</td>
</tr>
</tbody>
</table>

Total attendance time of module
56 h
inf300 - Hybrid Systems

Module name: Hybrid Systems
Module code: inf300
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Informatik > Mastermodule

Contact person:
- module responsibility: Martin Georg Fränzle
- Die im Modul Lehrenden

Prerequisites:
A BSc. in CS with a specialisation equivalent to "embedded systems and microrobotics" or corresponding knowledge from the MSc. The lecture assumes familiarity with the modelling and analysis of reactive systems.

Skills to be acquired in this module:
The module gives an introduction to hybrid discrete-continuous systems, as arising by embedding digital hardware into physical environments, and it elaborates on state of the art methods for the mathematical modelling and the analysis of such systems. It thus provides central competences for understanding and designing reliable cyber-physical systems.

Professional competence:
The students:
- characterise formal models of cyber-physical systems: hybrid automata, hybrid state transition systems
- name domain-specific system requirements: safety, stability, robustness
- name analysis methods: symbolic state-space exploration, abstraction and abstraction refinement, generalized Lyapunov-Methods
- use state-of-the-art analysis tools
- select and apply adequate modelling and analysis methods for concrete application scenarios
- apply methods to reduce large state spaces and reduce infinite-state systems by abstraction
- know the de-facto industry standards for system modelling and are able to apply the corresponding modelling frameworks and tools

Methodological competence:
The students:
- model heterogeneous dynamical systems with adequate modelling and design tools, in particular Simulink/Stateflow
- transfer modelling and analysis methods to other heterogeneous domains, e.g. socio-technical systems

Social competence:
The students:
- work in teams
- solve complex modelling, design, and analysis tasks in teams

Self-competence:
The students:
- reflect their actions and respect the scope of methods dedicated to hybrid systems

Module contents:
Content of the Module: Embedded computer systems continuously interact with their environment, which generally comprises state- and time-continuous components. The coupling of the embedded system to its environment thus induces complex interleavings between discrete computational and decision processes and continuous processes. The resulting processes are neither amenable to the analytic techniques of continuous control nor of discrete mathematics. They instead require a broader, integrated theory: hybrid discrete-continuous systems. The lectures provide an in-depth introduction into a variety of analysis and design methods of these computer-based systems and their recent extensions to cyber-physical systems.

The accompanying hands-on-project enhances the lecture by developing and using design and verification tools.

Recommended reading

Links

Languages of instruction: English, German
Duration (semesters): 1 semester
Module frequency: once a year
Module capacity: unlimited
Module level: AS (Akzentsetzung / Accentuation)
Modulart: Pflicht o. Wahlpflicht / compulsory or optional
Lern-/Lehrform / Type of program: V+Ü
Vorkenntnisse / Previous knowledge: A BSc. in CS or knowledge of ordinary differential equations

Examination examination periods Type of examination
Final exam of module At the end of the lecture period Semester project including written work and final presentation

Course type Comment SWS Offer rhythm Workload attendance
Lecture 3 42 h
Exercises 1 14 h
Total attendance time of module 56 h
inf301 - Machine-oriented Systems Engineering

<table>
<thead>
<tr>
<th>Module name</th>
<th>Machine-oriented Systems Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf301</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmoduls</td>
</tr>
<tr>
<td></td>
<td>• Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>• Master Engineering of Socio-Technical Systems > Human-Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>• Master Engineering of Socio-Technical Systems > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alfred Mikschl</td>
</tr>
<tr>
<td></td>
<td>• Werner Damm</td>
</tr>
<tr>
<td>authorized examiners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The module provides practical relevance to the design of digital embedded systems.</td>
</tr>
<tr>
<td>Professional competence</td>
<td></td>
</tr>
<tr>
<td>The students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• characterise the structure of microprocessor systems</td>
</tr>
<tr>
<td></td>
<td>• name control aspects of time sensitive external components</td>
</tr>
<tr>
<td></td>
<td>• program efficient embedded systems</td>
</tr>
<tr>
<td>Methodological competence</td>
<td></td>
</tr>
<tr>
<td>The students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• use specifications from electrical components data sheets</td>
</tr>
<tr>
<td>Social competence</td>
<td></td>
</tr>
<tr>
<td>The students:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• work in a team</td>
</tr>
<tr>
<td></td>
<td>• discuss solutions</td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Embedded systems support complex feedback problems, control problems and data processing tasks. They have an important value creation potential for telecommunications, production management, transport and electronics. The functionality of embedded systems is realised by the integration of processors, special hardware and software. The embedded systems design is influenced by the heterogeneity of system architectures, the complexity of systems and technical and economic requirements.</td>
<td></td>
</tr>
<tr>
<td>This module gives an initial review of computer architectures. After that embedded systems are introduced by a specific microprocessor. Furthermore, external hardware will be connected to the microprocessor. Besides this, the design of circuit boards will be discussed. The students will design, develop and implement a circuit layout with CAD and programme this embedded system with a Flash-eprom.</td>
<td></td>
</tr>
<tr>
<td>Recommended reading</td>
<td>Lecturers notes, hardware manuals and data sheets, and development tool manuals</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>semi-anual</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+P</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>„Eingebettete Systeme I and II“ and successful completion of the module „Praktikum Technische Informatik“</td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Portfolio (Design, development and implementation)</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Practical</td>
<td>2</td>
</tr>
</tbody>
</table>

Total attendance time of module 56 h
inf303 - Fuzzy Control and Artificial Neural Networks in Robotics and Automation

Module name: Fuzzy Control and Artificial Neural Networks in Robotics and Automation
Module code: inf303
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio- Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person:
- module responsibility: Sergej Fatikow
- Die im Modul Lehrenden
- authorized examiners:
 - Sergej Fatikow
 - Die im Modul Lehrenden

Prerequisites:
Experts in different branches try to approach their application-specific control and information processing problems by using fuzzy logic and artificial neural networks (ANN). The experiences gathered up to now prove robotics and automation technology to be predestined fields of application of both these approaches. The major topics of the course are control problems in robotics and automation technology, principles of fuzzy logic and ANN and their practical applications, comparison of conventional and advanced control methods, combination of fuzzy logic and ANN in control systems. The course gives a comprehensive treatment of these advanced approaches for interested students.

Professional competence
The students:
- recognise control problems in robotics and automation technology,
- name principles of fuzzy logic and ANN and their practical applications,
- characterise the combination of fuzzy logic and ANN in control systems

Methodological competence
The students:
- will acquire knowledge of the tools, methods and applications in fuzzy logic and ANN
- deepen their knowledge for the practical use of the given methods
- can use common software tools for design and application of fuzzy logic and ANN

Social competence
The students:
- gain experience in interdisciplinary work
- are integrated into the recent research work

Objective of the module / skills:

Self-competence
The students:
- are able to transfer the gained knowledge for later use in their theses or studies for AMiR
- can Design (complex) fuzzy logic controller and ANN systems
- reflect their (control) solutions by using methods learned in this course

Module contents:
- Control problems in robotics and automation technology
- Basic ideas of fuzzy logic and ANN
- Principles of fuzzy logic
- Fuzzy logic of rule-based systems
- ANN models
- ANN learning rules
• Multilayer perceptron networks and backpropagation
• Associative networks
• Self-organizing feature maps
• PID design principles
• Design of fuzzy control systems
• Fuzzy logic application examples
• Design of ANN control systems
• ANN application examples
• Fuzzy + Neuro: principles and applications

Recommended reading

Essential:

• Lecture notes (available at the secretariat, A1-3-303) in book form

Recommended:

• Kahler, J.: Fuzzy Control für Ingenieure, Vieweg, Braunschweig Wiesbaden, 1995
• Zell, A.: Simulation Neuronaler Netze, Addison-Wesley / Oldenbourg Verlag, Bonn, 1996

Secondary Literature:

• Altrock, M. O. R.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
• Kahler, J. und Hubert, F.: Fuzzy-Logik und Fuzzy-Control, Vieweg, 1993
• Kratzer, K.P.: Neuronale Netz, Carl Hanser, 1993
• Lawrence, J.: Neuronale Netz, Systhema Verlag, München, 1992
• Omidvar, O. and van der Smagt, P. (eds.): Neural Networks for Robotics, Academic Press, 1997
• Patterson, D.W.: Künstliche neuronale Netze, Prentice Hall, 1996
• Pham, D.T. a200
• nd Liu, X.: Neural Networks for Identification, Prediction and Control, Springer, 1997
• Rigoll, G.: Neuronale Netz, Expert Verlag, Renningen-Malmsheim, 1994
• Schulte, U.: Einführung in Fuzzy-Logik, Franzis-Verlag, München, 1993
• von Altrock, C.: Fuzzy Logic: Technologie, Oldenbourg, 1993
• White, D. and Solfge, D. (Eds.): Handbook of Intelligent Control, Van Nostrand Reinhold, New York, 1992
• Zakhari, S. Ladewig-Riebler, P. und Thoor, St.: Neuronale Netz für Ingenieur, Vieweg, Wiesbaden, 1998
• Zimmermann H.-J. (Hrsg.): Datenanalyse, VDI-Verlag, 1995
• Zimmermann, H.-J. (Hrsg.): Neuro + Fuzzy: Technologien und Anwendungen, VDI-Verlag, 1995

Links

Languages of instruction German, English

Duration (semesters) 1 semester

Module frequency once a year

Module capacity unlimited

Modulart Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program V+U

Vorkenntnisse / Previous knowledge Control engineering

Examination examination periods Hands-on-exercises and oral Exam

Final exam of module At the end of the lecture period until the beginning of the next semester

Course type Comment Offer rhythm Workload attendance

Lecture 3 42 h
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>1</td>
<td></td>
<td>14 h</td>
<td></td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf305 - Medical Technology

<table>
<thead>
<tr>
<th>Module name</th>
<th>Medical Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf305</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person
- module responsibility
 - Andreas Hein
- authorized examiners
 - Die im Modul Lehrenden
 - Andreas Hein

Prerequisites

Professional competence
The students:
- Describe medical diagnosis and therapy methods
- Understand the core concepts of computer-assisted medical interventions
- Are aware of the basic concepts and legal conditions of the development of medical devices
- Define the character of medical devices’ software parts and implement them
- Assess the complex interaction of medical products and patients
- Get familiar with the development of medical products within a short period of time

Methodological competence
The students:
- Recognise the interdisciplinary challenges and accordingly exchange information with other disciplines

Social competence
The students:
- Present solutions for specific questions

Self-competence
The students:
- reflect their solutions by using methods learned in this course

Module contents
- Medical areas and areas of application
- Basic requirements for medical systems (hygiene, MPG, technical security, materials)
- Medical systems:
- Functional diagnostics (ECG, EMG, EEG)
- Imaging systems (CT, MRI, ultrasound, PET, SPECT) - Therapy equipment (Laser, RF, Microtherapy)
- Signal processing / monitoring (cardiovascular, hemodynamic, respiratory, metabolic, cerebral)
- Medical Informatics (HIS, DICOM, Telemedicine, VR, image processing)

Recommended reading
- **essential:**
 - Lecture slides

- **recommended:**

Secondary literature:

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Module level</td>
</tr>
<tr>
<td>Module type</td>
</tr>
<tr>
<td>Lehr-/Lernform / Type of program</td>
</tr>
</tbody>
</table>

| Previous knowledge / Vorkenntnisse | Signal and Image Processing, Control Engineering |

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Portfolio: Hands-on exercises, report, and written or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total attendance time of module | 56 h |

<table>
<thead>
<tr>
<th>Attendance time of module</th>
<th>56 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
</tr>
</tbody>
</table>
inf307 - Robotics

Module name	Robotics
Module code | inf307
ECTS credit points | 6.0 KP
Workload | 180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person
module responsibility
- Andreas Hein
- Die im Modul Lehrenden

authorized examiners
- Die im Modul Lehrenden

Prerequisites
Skills to be acquired in this module

Professional competence
The students:
- Name and know the functions and applications of robot systems
- Characterise the basic concepts to program robot systems
- Differentiate between the interaction of mechanical, electrical and software components

Methodological competence
The students:
- Define characteristics and components of robot systems for a specific application
- Design and implement robot system sub-components
- Design and parameterise simple control structures
- Plan the application of robot systems and derive the requirements
- Model electrical and mechanical systems
- Develop and realise simple robot systems

Social competence
The students:
- Solve robot systems problems in team work

Self-competence
The students:
- Reflect their solutions in reference to robot system methods

Module contents
- Integration in production plants / aims / subsystems
- Architectures / classifications (classification of robots)
- Robot components + Computer systems for programming
 - PA-10
 - Lego Mindstorms
- Basics of kinematics
 - Coordinate transformation, homogeneous coordinates, Coordinate transitions
 - Kinematic equation systems, transformation of vectors
- Kinematic
 - Joint types (manipulators) / Wheels, TCP
 - Denavit-Hartenberg-Transformation
 - Forward calculation
 - Backward calculation
- Sensors
 - General properties of sensors, parameter
 - Simple optical position sensors
 - Inductive-, capacitive- und ultrasonic-sensors
 - Distance sensors (laser scanner, triangulation sensors)
- Force sensors
- Sensor data preparation
- Planning / Regulation
 - Overall regulation approach, terms, process- and control functions, PID-controller
 - Planning concepts and approaches (On-Line, Off-Line), planning processes, construction and path planning
- Actuators

Recommended reading

essential:
lecture nodes

recommended:

secondary literature:

Links

Languages of instruction
German, English

Duration (semesters)
1 semester

Module frequency
one a year

Module capacity
unlimited

Module level
AS (Akzentsetzung / Accentuation)

Modulart
Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program
V+Ü

Vorkenntnisse / Previous knowledge

Examination

Final exam of module
at the end of the lecture periode

Portfolio: Hands-on exercises, report, and written or oral exam

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>42 h</td>
</tr>
</tbody>
</table>

| Exercises | 1 | 14 h |

Total attendance time of module

56 h
inf308 - Microrobotics II

Module name: Microrobotics II
Module code: inf308
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person:
- module responsibility: Sergej Fatikow
- Die im Modul Lehrenden
- authorized examiners: Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:
After having given an established introduction in the module “Microrobotics and Microsystem Technology” this lecture offers a further specialisation in microrobotics. Within the course, all relevant areas (among others the research topics of the division “Microrobotics and Control Engineering (AMiR)”) will be presented and analysed. The student will be provided with an insight into current research projects of AMiR and of other research institutes of microrobotics worldwide; here mainly the requirements of industry to microrobots will be discussed. The lecture will be enhanced by practical courses in the research laboratories of AMiR.

Professional competence:
The students:
- Name and recognise the basic concepts of nanotechnology, in particular, micro- and nanorobotics approaches
- Differentiate the development, control and application of micro- and nanorobotics systems
- Implement and design application-specific micro- and nanorobotics systems

Methodological competence:
The students:
- Transfer their control engineering and image processing abilities on interdisciplinary problems
- Transfer their hands-on experience to develop controls and applications of microrobotic systems on new tasks

Social competence:
The students:
- Work in a team

Self-competence:
The students:
- Reflect their problem-solving behaviour and use hands-on experience to develop, control and application of microrobotics

Module contents:
- Smart and versatile microrobots; microactuators (piezo-, ferrofluid- and SMA-actuators) for microrobots; real-time image processing in the micro world (SEM, optical microscopy); micro force sensors and tactile sensors for microrobots; microrobot control systems, e.g. neural networks and fuzzy logic; haptic interface for the control of microrobots; neural speech interface for the control of microrobots; microbot control systems; multi-robot systems: team behavior, communication, control issues

Recommended reading:
- Lecture notes (can be obtained in our secretariate, A1-3-303)

Links

18 / 83
<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Module Microrobotics and Microsystem Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Oral Exam and exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td></td>
<td>42 h</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td></td>
<td>14 h</td>
<td></td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
<td>56 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inf311 - Low Energy System Design

<table>
<thead>
<tr>
<th>Module name</th>
<th>Low Energy System Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf311</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person
- **module responsibility**
 - Wolfgang Nebel
- **authorized examiners**
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competence
The students:
- Discuss the fundamental problems of power dissipation
- Characterise the requirements-driven design process of embedded systems
- Name power loss analysis and optimization methods
- Design embedded systems with common design and analysis tools
- Design power-optimized embedded systems

Methodological competence
The students:
- Model systems with a hardware description language
- Analyze and model hardware components
- Perform multi-dimensional optimization of systems

Social competence
The students:
- Implement solutions of given problems in teams
- Discuss their outcomes appropriately

Self-competence
The students:
- Acknowledge the limits of their ability to cope with pressure during the modeling process of systems

Module contents
According to Moore’s Law the number of integratable transistors on a computer chip doubles every two years. In addition, new circuits are getting faster and faster. This leads not only to an increased functionality of a system, but it also increases the electrical power consumption.

This electrical power consumption is problematic from two different points of view: Firstly, the electrical power must be supplied. Secondly, the resulting heat has to dissipate from the system. An increased power consumption always causes lower battery life and higher energy costs. The heat generation reduces the reliability and life of integrated circuits. The cooling (ceramic housings, cooling elements, fans, etc.) increases the system’s costs.

Today the development of heat, caused by power dissipation, needs to be considered during the embedded system design process. This knowledge takes the system’s reliability and operation costs into account.

This module introduces the estimation of power dissipation and optimisation.

Recommended reading
- Designing CMOS Circuits for Low Power – Dimitros Soudris, Christian Piguet, Costas Goutis
- Low-Power CMOS VLSI Circuit Design – Kaushik Roy, Sharat C. Prasad
- Low-Power Electronics Design – Christian Piguet et al.
- Leakage in Nanometer CMOS Technologies – Siva G. Narendra, Anantha Chandrakasan
- Entwurf von digitalen Schaltungen und Systemen mit HDLs und FPGAs – F. Kesel, R. Bartholomä
• Slides of the module „Eingebettete Systeme I+II“ von Professor Dr.-Ing. Wolfgang Nebel
• Slides and technical readouts of the used hardware and development tools

Links

Languages of instruction: German, English

Duration (semesters): 1 semester

Module frequency: jährlich

Module capacity: unlimited

Modullevel: AS (Akzentsetzung / Accentuation)

Modulart: Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program: V+Ü

Vorkenntnisse / Previous knowledge:
- inf200 Grundlagen der Technische Informatik,
- inf201 Technische Informatik,
- inf203 Eingebettete Systeme I+,
- inf204 Eingebettete Systeme II

Examination

Final exam of module: at the end of the lecture period

Type of examination: hands-on exercises and oral exam

Course type

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total attendance time of module: 56 h
inf350 - Special Topics in 'Safety-Critical Systems' I

Module name Special Topics in 'Safety-Critical Systems' I
Module code inf350
ECTS credit points 6.0 KP
Workload 180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person
module responsibility
- Andreas Hein
- Michael Sonnenschein
- Werner Damm
Module counseling
- Die im Modul Lehrenden

Prerequisites
Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.
Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:

- Support team process by their abilities

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Sicherheitsanalysetechniken“, „Zielarchitekturen Eingebetteter Systeme für Automotive-Anwendungen“, „Modellbasierten Systementwurf“, ...

Recommended reading
As announced in course

Links
Language of instruction German
Duration (semesters) 1 semester
Module frequency unregelmäßig
Module capacity unlimited
Modullevel AS (Akzentsetzung)
Modulart Wahlpflicht
Lern- Lehrform / Type of program 2 courses out of V, S, Ü, P, PR
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf351 - Special Topics in 'Safety-Critical Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Safety-Critical Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf351</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>Werner Damm</td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Module counseling</td>
<td>Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. „Sicherheitsanalysetechniken“, „Modellbasierter Systementwurf“, ...

Recommended reading

As announced in course

Links

Language of instruction | German
Duration (semesters) | 1 semester
Module frequency | halbjährlich
Module capacity | unlimited
Modullevel | AS (Akzentsetzung)
Modulart | Wahlpflicht
Lern-/Lehrform / Type of program | 2 courses out of V, S, Ü, P, PR
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf352 - Current Topics in 'Safety-Critical Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Safety-Critical Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf352</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 • Master Informatik > Mastermodule |
| Contact person | module responsibility |
| | 👉 Michael Sonnenschein |
| | 👉 Andreas Hein |
| | 👉 Werner Damm |
| | 👉 Die im Modul Lehrenden |
| | Module counseling |
| | 👉 Die im Modul Lehrenden |
| Prerequisites | This module integrates current developments in the field in adequate study courses. |
| Skills to be acquired in this module | Professional competences |
| | The students: |
| | • Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general |
| | • Recognise and evaluate applied techniques and methods of their subject and are aware of their limits |
| | • Identify, structure and solve problems/tasks, also in new or developing subject areas |
| | • Apply state of the art and innovative methods to solve problems, if necessary from other disciplines |
| | • Are aware of the current limits and contribute to the development of computer science research and technology |
| | • Discuss and evaluate recent computer science developments |
| | Methodological competences |
| | The students: |
| | • Examine tasks with technical and research literature, write an academic article and present their solutions academically |
| | • Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research |
| | • Schedule time processes and resources |
| | Social competences |
| | The students: |
| | • Communicate with users and experts convincingly |
| | Self-competences |
| | The students: |
| | • Pursue the overall and special computer science development critically |
| | • Develop and reflect self-developed hypotheses to theories independently |

<table>
<thead>
<tr>
<th>Module contents</th>
<th>See assigned course description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf353 - CurrentTopics in ‘Safety-Critical Systems’ II

Module name: CurrentTopics in ‘Safety-Critical Systems’ II
Module code: inf353
ECTS credit points: 3.0 KP
Workload: 90 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person
- Module responsibility:
 - Michael Sonnenschein
 - Andreas Hein
 - Werner Damm
 - Lehrende der Informatik

Module counseling:
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S or V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
inf354 - Special Topics in 'Hybrid Systems' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Hybrid Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf354</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 | • Master Informatik > Mastermodule |
| Contact person | |
| module responsibility | |
| ○ Michael Sonnenschein | |
| ○ Andreas Hein | |
| ○ Martin Georg Fränzle | |
| Module counseling | |
| ○ Die im Modul Lehrenden | |

Prerequisites

Skills to be acquired in this module

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- Support team process by their abilities

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Modellbasierter Systementwurf“, „Konstruktionsprinzipien ausgewählter Klassen von Fahrzeugfunktionen“

Recommended reading
As announced in course

Links

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: halbjährlich
Module capacity: unlimited
Module level: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf355 - Special Topics in 'Hybrid Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Hybrid Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf355</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
<pre><code> | • Master Informatik > Mastermodule |
</code></pre>
<p>| Contact person | module responsibility |
| | • Michael Sonnenschein |
| | • Andreas Hein |
| | • Martin Georg Fränzle |
| | Module counseling |
| | • Die im Modul Lehrenden |
| Prerequisites | This module integrates current developments in the field in adequate study courses. |
| Skills to be acquired in this module | The students: |
| | • Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general |
| | • Recognise and evaluate applied techniques and methods of their subject and are aware of their limits |
| | • Identify, structure and solve problems/tasks, also in new or developing subject areas |
| | • Apply state of the art and innovative methods to solve problems, if necessary from other disciplines |
| | • Are aware of the current limits and contribute to the development of computer science research and technology |
| | • Discuss and evaluate recent computer science developments |
| | Methodological competences |
| | The students: |
| | • Evaluate and apply tools, technology and methods sophisticatedly |
| | • Combine new and original approaches and methods creatively |
| | • Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research |
| | Social competences |
| | The students: |
| | • Support team process by their abilities |
| | Self-competences |
| | The students: |
| | • Pursue the overall and special computer science development critically |
| | • Implement innovative professional activities effectively and independently |
| Module contents | See assigned course description |
| Recommended reading | As announced in course |
| Links | |
| Language of instruction | German |
| Duration (semesters) | 1 semester |
| Module frequency | unregelmäßig |
| Module capacity | unlimited |
| Modullevel | AS (Akzentsetzung) |
| Modulart | Wahlpflicht |
| Lern-/Lehrform / Type of program | 2 courses out of V, S, Ü, P, PR |
| Vorkenntnisse / Previous knowledge | |</p>
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf356 - CurrentTopics in 'Hybrid Systems' I

Module name	CurrentTopics in 'Hybrid Systems' I
Module code | inf356
ECTS credit points | 3.0 KP
Workload | 90 h
Used in degree programmes |
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule
Contact person |
module responsibility
- Michael Sonnenschein
- Andreas Hein
- Martin Georg Fränzle
Module counseling
- Die im Modul Lehrenden
Prerequisites |
Skills to be acquired in this module | This module integrates current developments in the field in adequate study courses.
Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments
Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources
Social competences
The students:
- Communicate with users and experts convincingly
Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently
Module contents | See assigned course description
Recommended reading | As announced in course
Links |
Languages of instruction | German, English
Duration (semesters) | 1 semester
Module frequency | unregelmäßig
Module capacity | unlimited
Module level | AS (Akzentsetzung)
Modulart | Wahlpflicht
Lern-/Lehrform / Type of program | S or V
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf357 - Aktuelle Themen aus dem Gebiet "Hybride Systeme" II

Module name
Aktuelle Themen aus dem Gebiet "Hybride Systeme" II

Module code
inf357

ECTS credit points
3.0 KP

Workload
90 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person

module responsibility
- Michael Sonnenschein
- Andreas Hein
- Martin Georg Fränzle

Module counseling
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:

- Communicate with users and experts convincingly

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
S or V
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf358 - Special Topics in 'Hardware/Software Systems' I

Module name: Special Topics in 'Hardware/Software Systems' I
Module code: inf358
ECTS credit points: 6.0 KP
Workload: 180 h
Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodul
- Master Informatik > Mastermodule

Contact person
- Michael Sonnenschein
- Andreas Hein
- Wolfgang Nebel
- Module counseling: Die im Modul Lehrenden

Prerequisites
This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- Support team process by their abilities

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g., "Spezifikation und Modellierung Eingebetteter Systeme"

Recommended reading
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: halbjährlich
Module capacity: unlimited
Module level: AS (Akzentsetzung)
Module art: Wahlpflicht
Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf359 - Spezielle Themen aus dem Gebiet "Hardware-/Software-Systeme" II

Module name: Spezielle Themen aus dem Gebiet "Hardware-/Software-Systeme" II
Module code: inf359
ECTS credit points: 6.0 KP
Workload: 180 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person
- module responsibility:
 - Andreas Hein
 - Michael Sonnenschein
 - Wolfgang Nebel
- Module counseling:
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- Support team process by their abilities

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Spezifikation und Modellierung Eingebetteter Systeme“

Recommended reading
As announced in course

Links

Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modulelevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: 2 courses out of V, S, Ü, P, PR
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Exercises or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf360 - Current Topics in 'Hardware/Software Systems' I

Module name: Current Topics in 'Hardware/Software Systems' I

Module code: inf360

ECTS credit points: 3.0 KP

Workload: 90 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person:
Module responsibility:
- Michael Sonnenschein
- Andreas Hein
- Wolfgang Nebel

Module counseling:
- Die im Modul Lehrenden

Prerequisites:

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences:
The students:

- Communicate with users and experts convincingly

Self-competences:
The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents:
See assigned course description, e.g. "Energieeffizienz in der IKT", "Smart Resource Integration", ...

Recommended reading:
As announced in course

Links:

Language of instruction: German

Duration (semesters): 1 semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel: AS (Akzentsetzung)

Modulart: Wahlpflicht
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf361 - Current Topics in 'Hardware/Software Systems' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Hardware/Software Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf361</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| **Used in degree programmes** | Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
Master Informatik > Mastermodule |

Contact person
- module responsibility
 - Michael Sonnenschein
 - Andreas Hein
 - Wolfgang Nebel
- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competences
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
- Communicate with users and experts convincingly

Self-competences
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description, e.g. Energieeffizienz in der IKT, Smart Resource Integration, ...

Recommended reading
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>S or V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>
Inf366 - Special Topics in 'Microrobotics and Control Engineering' I

Module name
Special Topics in 'Microrobotics and Control Engineering' I

Module code
Inf366

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person

- Module responsibility
 - Andreas Hein
 - Michael Sonnenschein
 - Sergej Fatikow

- Module counseling
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- Support team process by their abilities

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. "Nanomontage und Nanohandhabung".

Recommended reading

As announced in course

Language of instruction

German

Duration (semesters)

1 semester

Module frequency

Jährlich

Module capacity

Unlimited

Modullevel

AS (Akzentsetzung)

Modulart

Wahlpflicht

Lern-/Lehrform / Type of program

2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf367 - Spezielle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Spezielle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf367</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Andrea Hein</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Sergej Fatikow</td>
</tr>
<tr>
<td>Module counseling</td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>Recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>Identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>Apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>Are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>Discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Methodological competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Evaluate and apply tools, technology and methods sophisticatedly</td>
</tr>
<tr>
<td></td>
<td>Combine new and original approaches and methods creatively</td>
</tr>
<tr>
<td></td>
<td>Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td>Social competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Support team process by their abilities</td>
</tr>
<tr>
<td>Self-competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>Implement innovative professional activities effectively and independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßt</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>2 courses out of V, S, Ü, P, PR</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
</tr>
</tbody>
</table>
inf368 - Aktuelle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Aktuelle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf368</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>• Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>• Sergej Fatikow</td>
</tr>
<tr>
<td></td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

Language of instruction | German
Duration (semesters) | 1 semester
Module frequency | unregelmäßig
Module capacity | unlimited
Module level | AS (Akzentsetzung)
Modulart | Wahlpflicht
Lern-/Lehrform / Type of program | S or V
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf369 - Current Topics in 'Microrobotics and Control Engineering' II

Module name: Current Topics in 'Microrobotics and Control Engineering' II
Module code: inf369
ECTS credit points: 3.0 KP
Workload: 90 h

Used in degree programmes:
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person:
module responsibility
- Andreas Hein
- Michael Sonnenschein

Module counseling:
- Die im Modul Lehrenden

Prerequisites:
Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences:
The students:

- Communicate with users and experts convincingly

Self-competences:
The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents: See assigned course description
Recommended reading: As announced in course

Links:
Language of instruction: German
Duration (semesters): 1 semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel: AS (Akzentsetzung)
Modulart: Wahlpflicht
Lern-/Lehrform / Type of program: S or V
Vorkenntnisse / Previous knowledge: 52 / 83
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf374 - Special Topics in 'Automotive' I

Module name
Special Topics in 'Automotive' I

Module code
inf374

ECTS credit points
6.0 KP

Workload
180 h

Used in degree programmes
• Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
• Master Informatik > Mastermodule

Contact person
module responsibility
○ Michael Sonnenschein
○ Andreas Hein
○ Martin Georg Fränzle

Module counseling
○ Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competences
The students:
• Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
• Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
• Identify, structure and solve problems/tasks, also in new or developing subject areas
• Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
• Are aware of the current limits and contribute to the development of computer science research and technology
• Discuss and evaluate recent computer science developments

Methodological competences
The students:
• Evaluate and apply tools, technology and methods sophisticatedly
• Combine new and original approaches and methods creatively
• Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
• Support team process by their abilities

Self-competences
The students:
• Pursue the overall and special computer science development critically
• Implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. &#132;Zeilarchitekturen Eingebetteter Systeme für Automotive-Anwendungen&#147;

Recommended reading
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
halbjährlich

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Ergänzung/Professionalisierung

Lern-<Lehrform / Type of program
2 courses out of V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>
inf375 - Special Topics in 'Automotive' II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Special Topics in 'Automotive' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf375</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
</tbody>
</table>
 - Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 - Master Informatik > Mastermodule |
| Contact person |
 - module responsibility
 - Michael Sonnenschein
 - Andreas Hein
 - Module counseling
 - Die im Modul Lehrenden |
| Prerequisites | |
| Skills to be acquired in this module | This module integrates current developments in the field in adequate study courses. |
| Professional competences | The students:
 - Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
 - Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 - Identify, structure and solve problems/tasks, also in new or developing subject areas
 - Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 - Are aware of the current limits and contribute to the development of computer science research and technology
 - Discuss and evaluate recent computer science developments |
| Methodological competences | The students:
 - Evaluate and apply tools, technology and methods sophisticatedly
 - Combine new and original approaches and methods creatively
 - Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research |
| Social competences | The students:
 - Support team process by their abilities |
| Self-competences | The students:
 - Pursue the overall and special computer science development critically
 - Implement innovative professional activities effectively and independently |
| Module contents | See assigned course description | |
| Recommended reading | As announced in course |
| Links | |
| Language of instruction | German |
| Duration (semesters) | 1 semester |
| Module frequency | unregelmäßig |
| Module capacity | unlimited |
| Modulelevel | AS (Akzentsetzung) |
| Modulart | Wahlpflicht |
| Lern-/Lehrform / Type of program | 2 courses out of V, S, Ü, P, PR |
| Vorkenntnisse / Previous knowledge | |
| Examination | examination periods |
| Type of examination | |
| Final exam of module | The exam period will be announced during the course | Portfolio or presentation or oral exam |
inf376 - Current Topics in 'Automotive' I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Current Topics in 'Automotive' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf376</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Recommended reading

As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>S or V</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf377 - Current Topics in 'Automotive' II

Module name
Current Topics in 'Automotive' II

Module code
inf377

ECTS credit points
3.0 KP

Workload
90 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person
module responsibility
- Michael Sonnenschein
- Andreas Hein
Module counceling
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Recommended reading
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modulelevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program
S or V

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>
inf450 - Correctness of Graph Programs

<table>
<thead>
<tr>
<th>Module name</th>
<th>Correctness of Graph Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf450</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 • Master Informatik > Mastermodule |
| Contact person | module responsibility |
| | • Michael Sonnenschein |
| | • Annegret Habel |
| | Module counseling |
| | • Die im Modul Lehrenden |

Prerequisites

Skills to be acquired in this module

The objectives of this module are modelling of systems, system changes and system properties. Introduction to graph programs. Introduction into system correctness. Methods for proving system correctness.

Professional competence

The students:

• Describe the basics of graph programs and graph properties
• Describe verification procedures of system correctness

Methodological competence

The students:

• Model systems, system changes and system properties
• Apply the formalism of graph programs

Social competence

The students:

• Solve problems in a team
• Present and discuss their proposed solutions

Self-competence

The students:

• Reflect upon their actions with regard to term rewriting systems and the methods of those

Module contents

The module is an introduction to the modelling of systems, system changes and system properties by means of graphs, graph programs and graph conditions and presents a method for proving correctness of systems with respect to a pre- and a postcondition.

The basic structures used in this lecture are graphs; they are used in practically all domains of computing science for the representation of complex structures. Graph programs are constructed from the core constructs of nondeterministic rule application, sequential composition and iteration and they can effect programmatic changes of a graph structure. One well-known method for determining the correctness of programs with respect to a pre- and a postcondition is based on the construction of a weakest precondition of the postcondition with respect to the program and the attempt to decide whether the given precondition implies the computed weakest precondition.

Recommended reading

Links

Language of instruction
German
<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>im 2-Jahres-Zyklus</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>examination periods</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Will be announced during the course</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td></td>
</tr>
</tbody>
</table>
inf453 - Combination of Specification Techniques

<table>
<thead>
<tr>
<th>Module name</th>
<th>Combination of Specification Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf453</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>Ernst-Rüdiger Olderog</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>inf400/inf401 Theoretische Informatik I and II</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Introduction to the specification languages Z for data, CSP for processes, and their combination CSP-OZ for reactive systems with data and process parts.</td>
</tr>
<tr>
<td>Professional competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• specify data and processes with Z, CSP and CSP-OZ formally</td>
</tr>
<tr>
<td></td>
<td>• check data refinement relations formally</td>
</tr>
<tr>
<td></td>
<td>• verify CSP-OZ specifications with FDR model checker</td>
</tr>
<tr>
<td>Methodological competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- are able to integrate complementary specification methods</td>
</tr>
<tr>
<td>Social competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• work together in small groups to solve problems</td>
</tr>
<tr>
<td></td>
<td>• present solutions to problems to groups of other students</td>
</tr>
<tr>
<td>Self-competence</td>
<td>The students:</td>
</tr>
</tbody>
</table>
| | • learn persistence in pursuing difficult tasks
| | • learn precision in specifying problems |
| Module contents | The course addresses a research trend in formal methods, the combination and integration of different specification methods. It focuses on a concrete combination CSP-OZ of the specification techniques CSP (Communicating Sequential Processes) for processes and Z and Object-Z for data, respectively. Reactive systems are described by CSP-OZ. As a preparation, the specification languages Z and CSP are described, followed by the combination CSP-OZ with its process-oriented semantics. The concepts of refinement and inheritance and the possibility of automatic verification of a sublanguage of CSP-OZ with the FDR model checker for CSP will be discussed. Finally, the course explains possibilities of extending CSP-OZ for the specification of time-critical systems. Topics: |
| | • specification of complex data and operations in Z, type definition and pattern calculations of Z, data refinement |
| | • specifications of communicating processes in CSP, operational semantics of CSP, three abstract semantic models |
| | for CSP: Trace semantics, failures semantics, failures-divergences semantics, process refinement in the above semantics, FDR model checker for CSP |
| | • combined specification method CSP-OZ, transformational semantics as CSP-process, theorems of |
refinements,
object-oriented concepts of class and inheritance in CSP-OZ

Recommended reading

Essential:

- M. Spivey. The Z Notation - A Reference Manual. Prentice Hall, 1989
 (siehe http://spivey.oriel.ox.ac.uk/~mike/zrm/index.html).
 (siehe http://www.usingz.com).

Recommended:

- C. Fischer. CSP-OZ: A Combination of Object-Z and CSP. In H. Bowmann, J. Derrick (Editors). Formal

Links

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Course type</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>exercises and oral exam</td>
</tr>
<tr>
<td>Lecture</td>
<td>Comment 3</td>
<td>Offer rhythm 42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td>Workload attendance</td>
</tr>
<tr>
<td></td>
<td>14 h</td>
<td></td>
</tr>
</tbody>
</table>

Total attendance time of module
56 h
inf454 - Communicating and Mobile Systems

Module name Communicating and Mobile Systems
Module code inf454
ECTS credit points 6.0 KP
Workload 180 h
Used in degree programmes
 • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 • Master Engineering of Socio-Technical Systems > Systems Engineering
 • Master Informatik > Mastermodule
Contact person
 module responsibility
 • Ernst-Rüdiger Olderog
 authorized examiners
 • Die im Modul Lehrenden
Prerequisites
Skills to be acquired in this module
Introduction to Milner's Calculus of Communicating Systems (CCS) and the π-calculus.

Professional competence
The students:
 • Know the theory of the operational semantics of CCS and the π-calculus
 • Perform equivalence proofs using simulations and bisimulations
 • Specify communicating and mobile systems with CCS and the π-calculus

Methodological competence
The students:
 • Learn about different views on mobility
 • Recognize equivalences as formal means for system correctness

Social competence
The students:
 • Work together in small groups to solve problems
 • Present their solutions to groups of other students

Self-competence
The students:
 • Learn persistence in pursuing difficult tasks
 • Learn precision in specifying problems

Module contents
Communication is one of the basic concepts of computer science. It occurs between computers in a network as well as between components of a computer. The focus of the course is on Robin Milner's π-calculus. It enables a new modelling of communication, taking the location of the communication into account.

The π-calculus can describe the change of data in a computer as well as the sending of messages or even programs along networks like the internet. It is also possible to describe reconfigurable networks. This will be shown using the examples of mobile phones, schedulers, automatic vending machines, data structures, communication protocols, and objects in object-oriented programming. All these applications are backed by the theory of the π-calculus, which is based on operational semantics and a concept of behavioural equivalence.

The theory will be explained in a step-by-step manner.

Topics:
 • different views on mobility
 • transition systems with simulations and bisimulations
 • Milner's Calculus of Communicating Systems (CCS) and Milner's π-calculus for mobile systems,
 both with operational semantics, structural congruence, strong equivalence and observational equivalence, relationship between reactions and transitions, solvability of recursive equations
 • formal specification of examples of communicating and mobile systems using CCS and the π-calculus
 • proof of strong equivalence and observational equivalence of given processes
- specification of dynamic data structures in the π-calculus

Recommended reading

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>irregular</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Theoretical Computer Science</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>At the end of the lecture period</th>
<th>written exam or oral exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total attendance time of module</td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>

SWS

Offer rhythm

Workload attendance
inf456 - Real-Time Systems

Module name	Real-Time Systems
Module code | inf456
ECTS credit points | 6.0 KP
Workload | 180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems > Systems Engineering
- Master Informatik > Mastermodule

Contact person
- module responsibility
 - Ernst-Rüdiger Olderog
 - Die im Modul Lehrenden
- authorized examiners
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module
- Introduction to formal methods of the specification and verification of time sensitive systems and their combinations.

Professional competence
- The students:
 - Learn about different models of time and real-time properties
 - Specify and verify real-time systems
 - Model real-time systems using Timed Automata and PLC-Automata
 - Apply the model checker UPPAAL for the verification of real-time properties
 - Specify real-time systems using the Duration Calculus
 - Learn about decidability and undecidability results for real-time systems

Methodological competence
- The students:
 - Recognize logic and automata as adequate forms for describing real-time systems

Social competence
- The students:
 - Work together in small groups to solve problems
 - Present their solutions to groups of other students

Self-competence
- The students:
 - Learn persistence in pursuing difficult tasks
 - Learn precision in specifying problems

Module contents

- Examples of time-critical systems are railway control systems, robots, or even gas burners. It is essential for these systems to comply with certain timing conditions. For example, the control of a railway crossing must close the gates not later than 4 seconds after the sensors have reported an approaching train. If the gates are open, they should stay that way for at least 15 seconds to allow for a safe crossing of vehicles.

- Different specification methods have been developed to describe such timing conditions.
- The Duration Calculus developed by Zhou Chaochen in 1991 is one attractive method. It is a logic combined with a calculus, in which the duration of states can be described. The course will introduce the Duration Calculus and will explain its application by means of examples. As further specification method Timed Automata introduced by Alur & Dill in 1994 will be presented. After the specification of real-time system requirements the verification of programs implementing these requirements will follow. The specification methods of the Duration Calculus and Timed Automata are used to describe the real-time behaviour of these programs. The correctness is then proven on the basis of these behavioral descriptions.

Topics:
- discrete and continuous model of time
- logics and automata models for the specification of real-time systems (predicate logic, Duration Calculus, Timed CTL, Timed Automata, PLC-Automata)
- decidability and undecidability results for real-time systems
- model checker UPPAAL for Timed Automata
- formal specification of real-time systems using Duration Calculus as well as Timed Automata and PLC-Automata
- verification of concrete Timed Automata using the model checker UPPAAL,
- transformation of Duration Calculus for discrete time into regular languages
- implementability of real-time systems on PLC-like hardware

Recommended reading

essential:

recommended:

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>irregular</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>V+U</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Theoretical Computer Science I and II</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises and written or oral exam</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exerices</td>
<td>1</td>
<td></td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total attendance time of module

- 56 h
Module: Term Rewriting Systems

Module name	Term Rewriting Systems
Module code | inf458
ECTS credit points | 6.0 KP
Workload | 180 h

Used in degree programmes
- Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
- Master Informatik > Mastermodule

Contact person
- **Module responsibility**
 - Michael Sonnenschein
 - Annegret Habel
- **Module counseling**
 - Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Professional competence
The students:
- Describe the basics of term rewriting systems
- Characterise the undecidability of termination and confluence problems
- Describe verification procedures of termination and confluence

Methodological competence
The students:
- Apply verification procedures of termination and confluence
- Apply Huet's completion procedure

Social competence
The students:
- Solve problems in a team
- Present and discuss their results

Self-competence
The students:
- Reflect their actions with regard to term rewriting systems and the methods of those

Module contents
The module is an introduction to term rewriting systems and provides verification procedures for termination and confluence. Term rewriting systems, termination and confluence are introduced, the undecidability of termination and confluence problems and the decidability for a set of special term rewriting systems are shown. For this purpose reduction and simplification orders, critical pairs, orthogonality and Huet's completion procedure are introduced, examined and combined.

Recommended reading

Links
<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>im 2-Jahres-Zyklus</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>exercises and oral or written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Offer rhythm</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td></td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total attendance time of module 56 h
inf513 - Energy Informatics Practical

<table>
<thead>
<tr>
<th>Module name</th>
<th>Energy Informatics Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf513</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik > Bereichswahlmodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>Michael Sonnenschein</td>
</tr>
<tr>
<td></td>
<td>Andreas Hein</td>
</tr>
<tr>
<td></td>
<td>Jorge Marx Gomez</td>
</tr>
<tr>
<td></td>
<td>Sebastian Lehnhoff</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Programming with JAVA</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Successfully completing this lecture will enable the students to mathematically model simple controllable electrical generators and consumers and to simulate them together with appropriate control algorithms within smart grid scenarios. To achieve this goal, students will start with deriving computational models from physical models and evaluate them. In order to manage the integration of control algorithms, students are taught the principles of cosimulation using the “mosaik” smart grid co-simulation framework as an example. Students will be able to understand and apply distributed, agent-based control schemes to decentralized energy generators and/ or consumers. As a result, students are able to analyze the requirements for successful application to real power balancing regarding capacity utilization, robustness, and flexibility. In addition, students learn the foundations of planning and conducting simulation based experiments as well as the interpretation of the results. Special attention will be paid on establishing a balance between the results’ precision and robustness and the necessary effort (design of experiments) in order to gain as much insight into interdependencies with as few experiments as possible.</td>
</tr>
<tr>
<td></td>
<td>Professional competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• derive and evaluate computational models from physical models</td>
</tr>
<tr>
<td></td>
<td>• use the ”mosaik” smart grid co-simulation framework</td>
</tr>
<tr>
<td></td>
<td>• analyze the requirements for successful applications to real power balancing regarding capacity utilization, robustness, and flexibility</td>
</tr>
<tr>
<td></td>
<td>• name the foundations of planning and conducting simulation based experiments as well as the interpretation of the results</td>
</tr>
<tr>
<td></td>
<td>• are aware of the balance between the results’ precision and robustness and the necessary effort (design of experiments) in order to gain as much insight into interdependencies with as few experiments.</td>
</tr>
<tr>
<td></td>
<td>Methodological competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• model simple controllable electrical generators and consumers</td>
</tr>
<tr>
<td></td>
<td>• simulate simple controllable electrical generators and consumers with appropriate control algorithms within smart grid scenarios</td>
</tr>
<tr>
<td></td>
<td>• apply distributed agent-based control schemes to decentralized energy generators and/ or consumers</td>
</tr>
<tr>
<td></td>
<td>• evaluate simulation results</td>
</tr>
<tr>
<td></td>
<td>• search information and look into methods to implement models</td>
</tr>
<tr>
<td></td>
<td>• propose hypothesis and check their validity with design of experiments methods</td>
</tr>
<tr>
<td></td>
<td>Social competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• apply the pair programming development technique</td>
</tr>
<tr>
<td></td>
<td>• discuss design decisions</td>
</tr>
<tr>
<td></td>
<td>• identify work packages and are responsible for it</td>
</tr>
<tr>
<td></td>
<td>Self-competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
</tbody>
</table>
• reflect on their own use of power as a limited resource
• accept and use criticism to develop their own behaviour

Module contents
In this practical course students:

• model controllable, modulating electrical energy generators and consumers,
• put their hands on mosaik (installation, description and configuration of scenarios, conduction of simulations),
• learn the principles of agent-based heuristics for optimization problems in future smart grid scenarios,
• learn about the challenges of implementing agent-based mechanisms (multi-criticality, convergency, quality) on the training,
• learn the foundations for choice and design of simulation based experiments.

Recommended reading
Suggested reading:

Smart Grids:

Multiagentensysteme

• Ferber, J.; Kim, S.: “Multiagentensysteme: eine Einführung in die Verteilte Künstliche Intelligenz”, Addison-Wesley, 2001

Co-Simulation

Versuchsplanung:

• Kleppmann, W.: ”Versuchsplanung”, Hanser, 2013
• Klein, B.: ”Versuchsplanung - DoE”, Oldenbourg, 2011

Links
http://mosaik.offis.de

Language of instruction
German

Duration (semesters)
1 semester

Module frequency
jährlich

Module capacity
unlimited

Information
Elective module in the master specialization area (energy computer science)

Modullevel
AS (Akzentsetzung)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination
examination periods
Type of examination
Final exam of module
At the end of the semester
oral exam
inf533 - Probabilistic Modelling I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Probabilistic Modelling I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf533</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>• Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>• Master Engineering of Socio-Technical Systems > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>• Master Wirtschaftsinformatik > Bereichswahltmodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Claus Möbus</td>
</tr>
<tr>
<td></td>
<td>authorized examiners</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Module counseling</td>
<td>Module counseling</td>
</tr>
<tr>
<td></td>
<td>• Die im Modul Lehrenden</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Probabilistic Bayesian models are generated with special tools (e.g. BUGS, JAGS, STAN) or programming languages (CHURCH, FIGARO, etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as assistance systems in technical systems like cars or robots.</td>
</tr>
</tbody>
</table>

Professional competence

The students:

- learn to map problem to model classes to come up with practical solutions

Methodological competence

The students:

- acquire basic skills in the design, implementation, and identification of probabilistic models with Bayesian methods
- acquire knowledge about alternative non-Bayesian machine learning methods

Social competence

The students:

- learn to present and discuss probabilistic theories, methods, and models.

Self-competence

The students:

- reflect and evaluate chances and limitations of probabilistic approaches
- learn to deliberate on machine-learning alternatives

Module contents

Theories, methods, and examples of Bayesian models with practical applications

Recommended reading

Recent eBooks, eTutorials

Links

http://www.uni-oldenburg.de/en/computingscience/lcs/probabilistic-programming/

Languages of instruction

German, English

Duration (semesters)

1 semester

Module frequency

jäährlich

Module capacity

unlimited

Modullevel

AS (Akzentsetzung / Accentuation)

Modulart

Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program

S

Vorkenntnisse / Previous knowledge

Basic programming skills

Examination

examination periods

Type of examination

Presentation, reflective summary
inf534 - Probabilistic Modelling II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Probabilistic Modelling II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf534</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | - Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 | - Master Informatik > Mastermodule
 | - Master Wirtschaftsinformatik > Bereichswahlmodule |

Contact person

Module responsibility
- Michael Sonnenschein
- Andreas Hein
- Claus Möbus

Module counselling
- Die im Modul Lehrenden

Prerequisites

Skills to be acquired in this module

Probabilistic models are generated with special tools (e.g. BUGS, JAGS, STAN) or programming languages (CHURCH, FIGARO, etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as assistance systems in technical systems like cars or robots. In this part of the seminar we read, present, and discuss recent research papers.

Professional competence:
The students:

- Learn to connect problem- with model classes to come up with practical solutions

Methodological competence
The students:

- Acquire advanced skills in the design, implementation, and identification of probabilistic models with Bayesian methods.
- Acquire knowledge about alternative machine learning methods.

Social competence
The students:

- Learn to present and discuss probabilistic theories, methods, and models.

Self-competence
The students:

- Reflect and evaluate chances and limitations of probabilistic approaches
- Learn to deliberate on machine-learning alternatives

Module contents

Theories, methods, and examples of Bayesian models with practical applications

Recommended reading

Recent publications

Links

http://www.uni-oldenburg.de/en/computingscience/lcs/probabilistic-programming/

Language of instruction

German

Duration (semesters)

1 semester

Module capacity

Unlimited

Module level

AS (Akzentsetzung)

Moduleart

Wahlpflicht

Lern-/Lehrform / Type of program

Examination

<table>
<thead>
<tr>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>seminar talk, reflective written summary</td>
</tr>
</tbody>
</table>
inf950 - Interdisziplinäres Modul I

<table>
<thead>
<tr>
<th>Module name</th>
<th>Interdisziplinäres Modul I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf950</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master Informatik > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>module responsibility</td>
</tr>
<tr>
<td></td>
<td>» Die im Modul Lehrenden</td>
</tr>
<tr>
<td></td>
<td>authorized examiners</td>
</tr>
<tr>
<td></td>
<td>» Die im Modul Lehrenden</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Ziele des Moduls/Kompetenzen:
Die Absolventinnen und Absolventen kennen die Grundlagen und anwendungsrelevanten Hintergründe der ausgewählten Disziplin.

Fachkompetenzen
Die Studierenden:

- benennen die Grundlagen und Methoden des gewählten Gebietes
- wenden die Fachsprache des Anwendungsgebietes kompetent an

Methodenkompetenzen
Die Studierenden:

- charakterisieren Nutzungskontext und Anforderungen von IT im gewählten Gebiet
- wenden die disziplinären Methoden und Techniken des Anwendungsgebietes an und kontrastieren diese mit den aus der Informatik bekannten Methoden und Techniken
- untersuchen Probleme eines Anwendungsgebietes mit den disziplin-typischen Methoden

Sozialkompetenzen
Die Studierenden:

- können die Verschiedenheit von Fachkulturen einschätzen und respektieren andere Fachgebiete und deren Arbeitsweise
- bereiten sich auf Anwendungsszenarien für IT-Systeme vor

Selbstkompetenzen
Die Studierenden:

- reflektieren ihr Selbstbild und Handeln vor dem Hintergrund einer anderen Fachdisziplin

Module contents
Das Modul wird mit Fachmodulen aus anderen Disziplinen oder Modulen des Departments für Informatik instanziiert, die als Nicht Informatik-Modul gekennzeichnet sind. Die Veranstaltungsformen und Prüfungsmodalitäten orientieren sich an dem jeweils gewählten Modul.

Recommended reading

Links

Languages of instruction

Duration (semesters) 1 semester

Module frequency unlimited

Module capacity

Module level AS (Akzentsetzung / Accentuation)

Modulart je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination examination periods Type of examination

Final exam of module Portfolio oder Referat oder mündliche Prüfung oder
Klausur.
inf951 - Interdisziplinäres Modul II

<table>
<thead>
<tr>
<th>Module name</th>
<th>Interdisziplinäres Modul II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf951</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in degree programmes | • Master Eingebettete Systeme und Mikrorobotik > Akzentsetzungsmodule
 | • Master Informatik > Mastermodule |
| Contact person | |
| Prerequisites | |
| Skills to be acquired in this module | |
| Module contents | |
| Recommended reading | |
| Links | |
| Languages of instruction | |
| Duration (semesters) | 1 semester |
| Module frequency | |
| Module capacity | unlimited |
| Modullevel | BC (Basiscurriculum / Base curriculum) |
| Modulart | je nach Studiengang Pflicht oder Wahlpflicht |
| Lern-/Lehrform / Type of program | |
| Vorkenntnisse / Previous knowledge | |
| Examination | examination periods |
| Final exam of module | Portfolio oder Referat oder mündliche Prüfung oder Klausur |
abschlussmodul

mam - Master’s Thesis Module

<table>
<thead>
<tr>
<th>Module name</th>
<th>Master’s Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mam</td>
</tr>
<tr>
<td>ECTS credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Used in degree programmes</td>
<td>Master Eingebettete Systeme und Mikrorobotik > Abschlussmodul</td>
</tr>
</tbody>
</table>

Contact person

- module responsibility
 - Michael Sonnenschein
 - Lehrende der Informatik

- authorized examiners
 - Lehrende der Informatik

Prerequisites

Skills to be acquired in this module

The students prove that they are able to process and solve complex computer science tasks based on gained scientific knowledge and applied research methods. The students successfully implement a task especially by using their acquired professional and methodological knowledge and their professional and social competences.

The accompanying seminar is used to discuss the master’s thesis methodically and content-related. During the seminar the exchange of research and practical experience fosters the students’ ability to discuss and evaluate their thesis with other students and experts. The master’s thesis is finished by a colloquium.

Professional competence

The students:

- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Design solutions for complex, possibly vaguely defined or unusual computer science tasks/problems and evaluate these with reference to state of the art computer science and technology
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Relate knowledge from different disciplines and apply this new knowledge in complex situations
- Develop complex computer systems, processes and datamodels
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competence

The students:

- Identify and develop one or more solutions
- Evaluate and apply tools, technology and methods sophisticatedly
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Schedule processes and resources
- Apply project management techniques
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competence

The students:

- Communicate with users and experts convincingly
- Take reasonable decisions

Self-competence

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently
- Recognise their abilities and extend them purposefully
- Reflect their self-perception and actions with regard to professional, methodological and social aspects
- Develop and reflect self-developed hypotheses to theories independently
- Work in their field independently

<table>
<thead>
<tr>
<th>Module contents</th>
<th>The content of this module is an independent topic research. The research findings will be presented and discussed in a master’s thesis colloquium.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Recommended reading</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel</td>
<td>Abschlussmodul (Abschlussmodul)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Master’s thesis</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>examination periods</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Master’s thesis, presentation and discussion.</td>
</tr>
</tbody>
</table>