Veranstaltungsverzeichnis

Veranstaltungsverzeichnis

Department of Health Services Research Click here for PDF-Download

Winter semester 2025/2026 8 Seminars
VAK Course Number Title Type Lecture
Preliminary studies
Advanced courses
Practical course
Colloquium
Research group
Workgroup
Project group
Council conference
Internship
Language course
Subject didactics
Excursion
Tutorial
Committee
SWS Semester weekly hours Teachers Degree
6.07.5408_E1 Applied Deep Learning Wednesday: 16:00 - 18:00, weekly (from 22/10/25)

Description:
Exercises 2 Prof. Dr. Nils Strodthoff
Juan Lopez Alcaraz
Zahra Mansour
  • Master
6.07.5408_L Applied Deep Learning Friday: 12:00 - 14:00, weekly (from 17/10/25), Location: A11 1-101 (Hörsaal B)
Dates on Thursday, 19.02.2026 09:00 - 11:00, Location: V03 0-D002

Description:
This lecture provides a comprehensive introduction to contemporary Deep Learning methods, with a specific emphasis on their practical application. Concurrently, it serves as a primer for the widely-used PyTorch Deep Learning framework, assuming only a basic familiarity with Python. The course encompasses a wide range of prevalent machine learning tasks across various data types, including tabular, image, text, audio, and graph data. Throughout the course, we delve into the most crucial and up-to-date model architectures within these domains. This encompasses convolutional neural networks, recurrent neural networks, and transformer models. The lecture is complemented by hands-on exercise sessions, where students will gain practical proficiency with PyTorch. Simultaneously, they will acquire practical insights to effectively apply contemporary deep learning methods within their specific fields of interest. This lecture provides a comprehensive introduction to contemporary Deep Learning methods, with a specific emphasis on their practical application. Concurrently, it serves as a primer for the widely-used PyTorch Deep Learning framework, assuming only a basic familiarity with Python. The course encompasses a wide range of prevalent machine learning tasks across various data types, including tabular, image, text, audio, and graph data. Throughout the course, we delve into the most crucial and up-to-date model architectures within these domains. This encompasses convolutional neural networks, recurrent neural networks, and transformer models. The lecture is complemented by hands-on exercise sessions, where students will gain practical proficiency with PyTorch. Simultaneously, they will acquire practical insights to effectively apply contemporary deep learning methods within their specific fields of interest.
Lecture 2 Prof. Dr. Nils Strodthoff
Juan Lopez Alcaraz
Zahra Mansour
Maham Khokhar
Nils Neukirch
  • Master
6.06.811 Journal Club Tuesday: 08:15 - 09:45, weekly (from 14/10/25)

Description:
Die Seminare vermitteln Kenntnisse zum Verständnis und zur Analyse englischsprachiger wissenschaftlicher Studien. Der Schwerpunkt liegt auf der geschriebenen Sprache. Die Seminare vermitteln Kenntnisse zum Verständnis und zur Analyse englischsprachiger wissenschaftlicher Studien. Der Schwerpunkt liegt auf der geschriebenen Sprache.
Seminar - Prof. Dr. Kathrin Börner
  • Master
6.07.001 Tutorial for new Data Science and Machine Learning students Friday: 14:00 - 16:00, weekly (from 17/10/25)

Description:
Tutorial - Prof. Dr. Nils Strodthoff
Jalil Alipour
6.07.5408_E3 Applied Deep Learning Wednesday: 12:00 - 14:00, weekly (from 22/10/25)

Description:
Exercises 2 Prof. Dr. Nils Strodthoff
Juan Lopez Alcaraz
Nils Neukirch
  • Master
6.07.5408_E2 Applied Deep Learning Monday: 12:00 - 14:00, weekly (from 20/10/25)

Description:
Exercises 2 Prof. Dr. Nils Strodthoff
Juan Lopez Alcaraz
Maham Khokhar
  • Master
6.07.550 Ethics in Data Science Friday: 10:00 - 12:00, weekly (from 07/11/25), Location: A05 1-160
Dates on Friday, 09.01.2026 14:00 - 16:00, Location: V03 2-A208

Description:
Lecture - Prof. Dr. Mark Schweda
Prof. Dr. Nils Strodthoff
Prof. Dr. Antje Wulff
Matthias Hauer
Prof. Dr. Gerald Enzner
Prof. Dr. Bernd Meyer
Prof. Dr. Peter Ruckdeschel
Prof. Dr. Alexander Hartmann
  • Master
6.06.812 English Grammar Lab The course times are not decided yet.
Description:
Die Seminare vermitteln Kenntnisse zum Verständnis und zur Analyse englischsprachiger wissenschaftlicher Studien. Der Schwerpunkt liegt auf der geschriebenen Sprache. Die Seminare vermitteln Kenntnisse zum Verständnis und zur Analyse englischsprachiger wissenschaftlicher Studien. Der Schwerpunkt liegt auf der geschriebenen Sprache.
Seminar - Prof. Dr. Kathrin Börner
  • Master
8 Seminars

Top