mar730 - Energiesysteme (ES)

mar730 - Energiesysteme (ES)

Originalfassung Englisch PDF Download
Modulbezeichnung Energiesysteme (ES)
Modulkürzel mar730
Kreditpunkte 12.0 KP
Workload 360 h
Einrichtungsverzeichnis Institut für Chemie und Biologie des Meeres (ICBM)
Verwendbarkeit des Moduls
  • Master Umweltmodellierung (Master) > Mastermodule
Zuständige Personen
  • Peinke, Joachim (Modulberatung)
  • Parisi, Jürgen (Modulberatung)
  • Steinfeld, Gerald (Modulberatung)
  • Stoevesandt, Bernhard (Modulberatung)
  • Heinemann, Detlev (Modulverantwortung)
Teilnahmevoraussetzungen
keine
Kompetenzziele
Die Studierenden besitzen die erforderlichen Fertigkeiten über Energiesysteme unterschiedlicher Art, um selbständig unterschiedlichen Probleme modellieren zu können.

Computational Fluid Dynamics I+ II (VL, S)
- provide basic knowledge in physical flow modeling and turbulence
- mathematical realizations, i.e., numerical methods
- overview of numerical techniques of practical relevance, capability of selecting a model for specific applications (strenghts and weaknesses of various model classes)
- practice with state-of-the-art models

Energiemeteorologie I (Solar)
- Providing a solid understanding of physical processes governing the surface solar irradiance available for solar energy applications
- Developing skills in solar radiation modeling, i.e., expertise in application, adaptation and development of models
- Solid knowledge in state-of-the-art-methods in satellite-based irradiance estimation and solar power forecasting
- Detailed understanding of the influence of meteorological/climatological aspects on the performance of solar energy systems

Energy Meteorology II (Wind)
- Detailed understanding of the influence of meteorological/climatological aspects on the performance of wind power systems
- Solid knowledge of physical processes governing atmospheric wind flows
- Understanding atmospheric boundary layer flow relevant for wind power conversion
- Knowledge in methods for wind resource assessment and foercasting

Windenergy I/Windenergy II
The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects.

Solar Energy
Solar Energy conveys knowledge about Photovoltaic and Solar Thermal systems and components. The students learn to dimension and economically evaluate installations, on both a general and detailed level with the help of software. Furthermore, the students will gain insight into the physical and engineering processes for solar energy utilization.
Modulinhalte
Dieses Modul dient der Spezialisierung auf das Anwendungsgebiet Energiesysteme. Aus dem gesamten Angebot können die Studierenden Veranstaltungen entsprechend der von ihnen gewünschten Ausrichtung auf Wind- und/oder Sonnenenergie wählen.

Computational Fluid Dynamics I+ II (VL, S)
- Navier-Stokes-Equations
- filtering/averaging of Navier- Stokes-Equations
- introduction to numerical methods
- finite-differences, finite-volumes methods
- linear equation systems, NS-solvers, RANS, URANS, LES, DNS
- turbulent flow, incompressible & compressible flow
- efficiency and accuracy
- application of OpenFOAM and PALM models

Energy Meteorology I (Solar)
- Physics of radiative processes in the atmosphere
- Physical modeling of atmospheric radiative transfer (incl. computing tools)
- Solar irradiance modeling for solar energy applications
- Solar spectral irradiance: Theory & relevance for solar energy systems
- Satellite-based estimation of solar irradiance
- Solar irradiance (& solar power) forecasting
- Solar radiation measurements: Basics & setup of high-quality measurement system

Energy Meteorology II (Wind)
- Dynamics of Horizontal Flow (forces, equation of motion, geostrophic wind, frictional effects, primitive equations, general circulation)
- Atmospheric Boundary Layer (turbulence, vertical structure, special BL effects)
- Atmospheric Flow Modeling: Linear models, RANS & LES models
- Wind farm modeling
- Offshore-Specific Conditions
- Resource Assessment & Wind Power Forecasting
- Wind Measurements & Statistics

Wind Energy: I
- physical properties of fluids
- wind characterization and anemometers,
- aerodynamic aspects of wind energy conversion,
- dimensional analysis, (pi-theorem)
- wind turbine performance
- design of wind turbines
- electrical systems

Wind Energy: II
- Abschätzung von Windenergie-Ressourcen (Weibull Verteilung, Grundlagen der WAsP Methode, Langzeit-Korrektur von Windmessdaten, Einfluss der Schichtungsstabilität, Windertrags- Abschätzungen, Ermittlung jährlicher Windertragspotentiale)
- Nachlaufeffekte und Windparks (Wiederherstellung des ursprünglichen Windfeldes in der Nachlaufströmung von Windturbinen, Grundlagen des Risø Models, Effizienz von Windturbinen in Windparks, Effekte von Windparks)
- Windpark Betrieb (Einflüsse auf den Energieertrag von Windparks)

Solar Energy
Components:
- Descriptions of components in stationary as well as dynamic installations: Mode of Operation, technology, characteristics
- Photovoltaics (PV): Solar cells, PV generator, system components
- Solar thermal collector (Flat Plate, Vacuum, Concentrating), thermal storage
System:
- Descriptions of systems in stationary and dynamic installations: Construction, interaction of components, losses
- Photovoltaics: PV Island Systems, PV Grid‐coupled systems, PV pumping systems, hybrid systems
- Solar Thermal: Hot water production, heat‐supporting solar thermal systems, solar cooling, solar thermal power stations

Aktuelle Forschungsthemen der Windenergiemeteorologie
Das Seminar behandelt jeweils semesterweise Themenblöcke aus dem Bereich der meteorologischen Randbedingungen der Windenergie.
Beispiele hierfür sind: Offshore-spezifische Windbedingungen und deren Einfluss auf Windparks; Strömungsmodelle für Windfelder innerhalb und im Nachlauf von Windparks; großräumige meteorologische Einflüsse auf die Netzeinspeisung von Windenergie; numerische Methoden der windenergiespezifischen Strömungsmodellierung.
Literaturempfehlungen
Computational Fluid Dynamics I+ II:
J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002
C. Hirsch, Numerical Computation of Internal and External Flows: Introduction to the Fundamentals of CFD: Vol 1: The Fundamentals of Computational Fluid Dynamics, 2nd edition, Butterworth-Heinemann, 2007
P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer, 1998
J. Fröhlich, Large Eddy Simulationen turbulenter Strömungen, Teubner, 2006 (in German)

Energy Meteorology I (Solar):
M. Iqbal: An Introduction to Solar Radiation (Academic Press, Toronto, 1983)
K.-N. Liou: An Introduction to Atmospheric Radiation, 2nd Ed. (Academic Press, Orlando, 2002)
Thomas, G. E. and K. Stamnes: Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, 1996.
A. Marshak, A. Davis (Eds.): 3D Radiative Transfer in Cloudy Atmospheres (Springer Berlin Heidelberg New York, 2005)
J.A. Duffie, W.A.Beckman: Solar Engineering of Thermal Processes, 2nd Ed. (Wiley& Sons, 1991)

Energy Meteorology II (Wind):
J. R. Holton: An Introduction to Dynamic Meteorology (3rd Edition, Academic Press, New York, 1992)
Stull, R.B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Pub.

Wind Energy I/Wind Energy II:
T. Burton et. al.: Wind Energy Handbook. John Wiley, New York, 2nd ed., 2011
R. Gasch, J. Twele: Wind Power Plants. Springer, 2nd ed., 2011.

Solar Energy:
Duffie, John A. & Beckman, William A. , 2006: Solar Engineering of Thermal Processes, Wiley. Green, Martin A. , 1981: Solar cells : operating principles, technology and system applications, Prentice Hall. Green, M.A., 2007: Third Generation Photovoltaics, Advanced Solar Energy Conversion, Springer Series in Photonics
Twidell, John & Weir, Toni, 2005: Renewable Energy Resources Taylor & Francis.

Aktuelle Forschungsthemen der Windenergiemeteorologie:
themenspezifisch, wird jeweils im Seminar bekannt gegeben
Links
Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 2 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Hinweise
12 KP | VL; SE | 1. und 2. FS | Heinemann
Modulart je nach Studiengang Pflicht oder Wahlpflicht
Modullevel ---
Lehr-/Lernform Aus der folgenden Liste müssen Veranstaltungen im Umfang von 12 KP belegt ausgewählt werden:

VL/S Computational Fluid Dynamics I + II (6 KP)
VL Energy Meteorology I (Solar) (3 KP)
VL Energy Meteorology II (Wind) (3 KP)
VL Wind Energy (3 KP)
VL Wind Energy II (3 KP)
VL Solar Energy (3KP)
S Aktuelle Forschungsthemen der Windenergiemeteorologie (3 KP)
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 2 WiSe 28
Seminar
Übung 2 WiSe 28
Präsenzzeit Modul insgesamt 56 h
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul
1 benotete Prüfungsleistung:
Mündliche Prüfung (ca. 30 Min.) oder Klausur (Klausur ist zeitlich teilbar aber als Ganzes zu bewerten) mit Inhalten aus zwei Veranstaltungen; Art der Prüfungsleistung wird bei Semesterbeginn von den entsprechenden Prüfenden bekannt gegeben

Unbenotete Prüfungsleistungen:
Mündliche Prüfung oder Klausur oder Portfolio oder fachpraktische Übung oder aktive Teilnahme; Art der Prüfungsleistung wird bei Semesterbeginn von den entsprechenden Prüfenden bekannt gegeben

Aktive Teilnahme umfasst z.B. die regelmäßige Abgabe von Übungen, Anfertigung von Lösungen zu Übungsaufgaben, die Protokollierung der jeweils durchgeführten Versuche bzw. der praktischen Arbeiten, die Diskussion von Seminarbeiträgen oder Darstellungen von Aufgaben bzw. Inhalten in der Lehrveranstaltung in Form von Kurzberichten oder Kurzreferat

Nach allgemeinen Standards als ausreichend zu bewertende Prüfungsleistung

Nach oben