Module label | Thermal Energy Storage
Module code | pre364
Credit points | 4.0 KP
Workload | 120 h
Used in course of study | Master's Programme European Master in Renewable Energy (EUREC) > Mastermodule
Contact person |
Entry requirements |
Skills to be acquired in this module
- be familiar with main storage materials and technologies and will be able to choose which one is the most adapted to a specific solar application.
- have an understanding of the basic physical phenomena relevant to the principles of operation and design of thermal energy storages.
- have an understanding of the principles of operation and design of thermal energy storages.
- have an understanding of the need to define properly the functionalities of the TES.
- acquire the knowledge of the main technologies and materials used in TES.
- acquire the awareness of the importance of considering the relevant integration of TES in the whole process of application.
- acquire the awareness of the importance of strategy and management in the use of TES.
- acquire the knowledge of the main companies involved in the various aspects of TES (material, envelopes, fluids).
- have a critical understanding of the physical principles used in TES.
- be able to compare the design, operation and performances of the main types of TES.
- be able to choose the relevant TES for a particular application.
- be able to highlight the main limitations of a TES.
- be able to avoid the usual mistakes encountered in TES.
- be able to propose companies providing the various components of TES.

Module contents
1. Overview on Thermal Energy Storage (TES)
- TES definitions
- TES functionalities
- TES basic principles
- TES technologies
- ES hybridations
- ES bottlenecks and current research areas
2. Needs of TES in solar applications
- Resource/demand shift management
- Thermal protection
- Thermal regulation
- Production optimisation
- Process design optimisation
- Process management
3. Available technologies (sensible, latent heat, thermochemical)
- Sensible heat based TES, direct mode.
- Sensible heat based TES, indirect mode.
- Latent heat based TES (organic, inorganic)
- Thermochemical based TES
4. Related materials
- Low temperature TES materials (sensible heat, latent heat, thermochemical, classifications and properties, characterizations)
- High temperature TES materials (sensible heat, latent heat, thermochemical, classifications and properties, characterizations)
5. Heat transfer interfaces and fluids
- Envelops for TES units
- Insulating materials for TES units
- Heat transfer fluids for TES
6. Implementation of TS
- TES integration
- TES instrumentation
- TES charge/discharge assessments
7. Management and strategy of TS
- TES management
- TES strategy
- LTA of TES in Solar Applications
8. Related companies and products
- Companies and products for sensible heat based TES
- Companies and products for latent heat based TES
- Companies and products for thermochemical TES
- Companies and products for envelopes and connections

Reader’s advisory

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modulelevel
MM (Mastermodul)

Modulart
Pflicht

Lern-/Lehrform / Type of program
Lecture, Tutorial

Vorkenntnisse / Previous knowledge

Examination

Time of examination
End of the Semester

Type of examination
Written exam: 2 hours

Course type
Seminar

SWS

Frequency

Workload attendance
0 h