pre364 - Thermal Energy Storage

Module label: Thermal Energy Storage
Module code: pre364
Credit points: 4.0 KP
Workload: 120 h

Used in course of study:
- Master's Programme European Master in Renewable Energy (EUREC) > Mastermodule

Contact person:

Entry requirements:

Skills to be acquired in this module:

- be familiar with main storage materials and technologies and will be able to choose which one is the most adapted to a specific solar application.
- have an understanding of the basic physical phenomena relevant to the principles of operation and design of thermal energy storages.
- have an understanding of the principles of operation and design of thermal energy storages.
- have an understanding of the need to define properly the functionalities of the TES.
- acquire the awareness of the importance of considering the relevant integration of TES in the whole process of application.
- acquire the awareness of the importance of strategy and management in the use of TES.
- acquire the knowledge of the main companies involved in the various aspects of TES (material, envelopes, fluids).
- have a critical understanding of the physical principles used in TES.
- be able to compare the design, operation and performances of the main types of TES.
- be able to choose the relevant TES for a particular application.
- be able to highlight the main limitations of a TES.
- be able to avoid the usual mistakes encountered in TES.
- be able to propose companies providing the various components of TES.

Module contents:

1. Overview on Thermal Energy Storage (TES)
 - TES definitions
 - TES functionalities
 - TES basic principles
 - TES technologies
 - ES hybridations
 - ES bottlenecks and current research areas
2. Needs of TES in solar applications
 - Resource/demand shift management
 - Thermal protection
 - Thermal regulation
 - Production optimisation
 - Process design optimisation
 - Process management
3. Available technologies (sensible, latent heat, thermochemical)
 - Sensible heat based TES, direct mode.
 - Sensible heat based TES, indirect mode.
 - Latent heat based TES (organic, inorganic)
 - Thermochemical based TES
4. Related materials
 - Low temperature TES materials (sensible heat, latent heat, thermochemical, classifications and properties, characterizations)
 - High temperature TES materials (sensible heat, latent heat, thermochemical, classifications and properties, characterizations)
5. Heat transfer interfaces and fluids
 - Envelops for TES units
 - Insulating materials for TES units
 - Heat transfer fluids for TES
6. Implementation of TS
 - TES integration
 - TES instrumentation
 - TES charge/discharge assessments
7. Management and strategy of TS
 - TES management
 - TES strategy
 - LTA of TES in Solar Applications
8. Related companies and products
 - Companies and products for sensible heat based TES
 - Companies and products for latent heat based TES
 - Companies and products for thermochemical TES
Reader’s advisory

- Companies and products for envelopes and connections

Links

- **Language of instruction**: English
- **Duration (semesters)**: 1 Semester
- **Module frequency**: jährlich
- **Module capacity**: unlimited
- **Module level**: MM (Mastermodul)
- **Module type**: Pflicht

Lern-/Lehrform / Type of program

- Lecture, Tutorial

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>End of the Semester</td>
<td>Written exam: 2 hours</td>
</tr>
</tbody>
</table>

Course type

- Seminar

SWS

<table>
<thead>
<tr>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload attendance</td>
</tr>
</tbody>
</table>

Powered by TCPDF (www.tcpdf.org)