inf510 - Energy Information Systems

Module label: Energy Information Systems
Module code: inf510
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Business Informatics > Bereichswahlmodule
- Master's Programme Computing Science > Angewandte Informatik
- Master's Programme Engineering Physics > Schwerpunkt: Renewable Energies
- Master's Programme Environmental Modelling > Mastermodule

Contact person:
- Module responsibility: Sebastian Lehnhoff
- Authorized examiners: Sebastian Lehnhoff, Die im Modul Lehrenden

Entry requirements:
The students will learn different approaches to integrate distributed facilities, the regulatory framework, relevant standards and architecture concepts of energy management systems and will be able to apply this knowledge.

Skills to be acquired in this module:

Professional competence
The students:
- develop and evaluate IT-architectures for energy management systems
- model objects of this domain appropriately
- model energy information systems
- realise and differentiate advanced tasks of decentralised energy management systems

Methodological competence
The students:
- identify problems of energy management, analyse these problems systematically and provide solutions
- apply different simulation approaches of decentralised plants and consumers

Social competence
The students:
- discuss solutions for energy management systems in the group
- develop use cases in teams
- present self-developed solutions

Self-competence
The students:
- reflect their actions with regard to structuring and decomposing systems
- reflect their own use of power as a limited resource

Module contents:
This module provides the computer science basics for energy management. It provides the requirements of energy supply information systems with the focus on technical components and the requirements of decentralised and renewable energy plants.

These are:
- Architectures for energy information systems, e.g. SOA, Seamless Integration Architecture (IEC TC 57), OPC-UA
- Norms and standards of energy industry data models (CIM, 61850)
- Systematisation of energy information system requirements based on ontologies
- Development, analysis and adaption of energy industry reference models and processes
- Methods and technologies to support energy industry processes
- Methods and algorithms to support decision processes of the decentralised energy plants control
- Smart Grid plant communication, particularly for load management
- Methods for modelling and simulation of power supply system dynamics

Reader’s advisory

- Crastan V.: "Elektrische Energieversorgung II", Springer 2004

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
<th>Student research project or presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the semester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

| Workload attendance | 56 h |