mat996 - Introduction to Numerical Analysis

Module label
Introduction to Numerical Analysis

Module code
mat996

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Bachelor's Programme Business Informatics > Aufbaumodule
- Bachelor's Programme Computing Science > Wahlpflichtbereich Mathematik
- Master's Programme Computing Science > Nicht Informatik

Contact person
Module responsibility
- Alexey Chernov
- Frank Schöpfer

Entry requirements

Skills to be acquired in this module
The students learn and analyze the basic numerical methods. The students learn to implement the basic numerical methods in a computer program.

Professional competence
The students:
- learn basic numerical methods and algorithms
- analyze properties of the numerical methods using rigorous mathematical tools
- implement the basic numerical methods in a computer program
- interpret results of computer simulations

Methodological competence
The students:
- analyze algorithms with mathematical tools
- implement numerical algorithms for concrete problems

Social competence
The students:
- develop solutions to given problems in groups
- accept constructive criticism

Personal competence
The students:
- reflect their solution strategies
- deepen their understanding of the presented mathematical and algorithmical concepts with exercises and adopt the solution methods

Module contents
- Numerical methods for linear systems: LU-, Cholesky decompositions, iterative methods
- Numerical methods for nonlinear equations: fix-point iterations, Newton's Method
- Polynomials, spline and trigonometric interpolation
- Numerical integration: Newton-Cotes, Gauss quadrature rules, adaptive quadrature and extrapolation methods
- Stability and conditioning of algorithms and problems

Reader's advisory

Links
- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: every year
- Module capacity: unlimited
- Module level: AS (Akzentsetzung / Accentuation)
- Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Analysis I, Lineare Algebra

Examination

<table>
<thead>
<tr>
<th>Time of examination</th>
<th>Type of examination</th>
<th>Final exam of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the lecture period written exam</td>
<td>Final exam of module</td>
<td></td>
</tr>
</tbody>
</table>

Course type
Lecture

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.67</td>
<td>WiSe</td>
<td>37.38 h</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload attendance</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.33</td>
<td>WiSe</td>
<td>18.62 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module