inf532 - Introduction to Cognitive Engineering

Module label: Introduction to Cognitive Engineering
Module code: inf532
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Engineering of Socio-Technical Systems > Human-Computer Interaction

Contact person:
Module responsibility:
- Sebastian Feuerstack
- Die im Modul Lehrenden

Authorized examiners:
- Sebastian Feuerstack
- Die im Modul Lehrenden

Entry requirements:

Skills to be acquired in this module:

Professional competences:
The students:
- Understanding of state of the art methods, techniques and tools (MTTs) to describe, model and evaluate human performance in safety-critical systems.
- Basic understanding of cognitive modelling and state of the art cognitive architectures
- Application of MTTs for use cases applications in Automotive, ATC, Maritime, Healthcare and Energy.
- Understanding of model-based user interface engineering, which derives human machine interface designs based on models.

Methodological competences:
The students:
- Select and apply MTTs to predict human performance, in particular for:
 - task analysis, design and modeling
 - modelling and prediction human visual attention while monitoring complex systems,
 - task performance and workload prediction based on cognitive architectures.

Social competences:
The students: --

Self-competences:
The students:
- Solve analysis, design and modelling tasks
- Model-based thinking

Module contents:
The module aims at students from computer science, engineering, and psychology that are interested in getting and understanding into analyzing the impact of a human-machine interface to a human operator's performance and well-being.

Computer programming skills are not required, but an interest in applying computer programs to model human behavior as part of the practical exercise is expected.

The module consists of a lecture and an exercise part:

Lecture:
The module introduces the field of cognitive engineering, which is an emerging branch of human factors and ergonomics and places particular emphasis on the structured analysis of cognitive processes required of operators in safety-critical applications. The lecture puts specific emphasis on models and processes for task analysis (i.e. ConcurTaskTrees), visual attention (i.e. SEEV), human performance (i.e. modern GOMS variants) and also introduce cognitive modelling based on cognitive architectures, which implement psychological and physiological plausible models to explain and predict human performance (i.e. ACT-R and CASCaS). Besides these approaches that are mostly targeted to systematically evaluate interactive systems, we also spend time on introducing "constructive" design methods (i.e. based on ecological interface design) to optimize human machine interfaces so that they can be efficiently used and perceived.

Exercises:
Based on the examples (e.g. managing incoming flights at air traffic control, driving a car in complex overtaking scenarios or performing time critical interventions with robots in an operation theater) that
we introduce in the lecture to explain and discuss the theoretical models of e.g. human attention, or human performance prediction, we aim at modeling these examples in the exercises in our lab to end up with concrete human performance predictions.

Reader's advisory

Each lecture covers usually a specific chapter of one of the following books or articles:
- Model-Based Design and Evaluation of Interactive Applications (Fabio Paternò)
- Introduction to ACT-R (John R. Anderson, Christian Lebiere)
- Engineering Psychology and Human Performance (Chris Wickens, Justin Hollands)
- Ecological interface design: Progress and challenges. Human Factors (Kim Vicente)
- Cognitive Work Analysis: Toward Safe, Productive, and Healthy Computer-Based Work (Kim Vicente)
- The psychology of Human Computer Interaction (Card, Moran, Newell)

Links

http://www.humanics.eu

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

unlimited

Module capacity

unlimited

Reference text

Associated with the module(s):
- Application Area Automotive
- Usability in Medicine
- AC (Aufbaucurriculum / Composition)
- Pflicht o. Wahlpflicht / compulsory or optional

Vorkenntnisse / Previous knowledge

Helpful previous knowledge:
- Fundamental Competences in Psychology I
- Fundamental Competences in Psychology III
- Applied Cognitive Psychology
- Human Computer Interaction

Examination

At the end of the lecture period
oral exam

Course type

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2.00</td>
<td>SuSe and WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>2.00</td>
<td>SuSe and WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

56 h