neu470 - Molecular Sensory Neuroscience

Module label
Molecular Sensory Neuroscience

Module code
neu470

Credit points
15.0 KP

Workload
450 h

Used in course of study
- Master's Programme Neuroscience > Research Modules

Contact person
Module responsibility
- Karl-Wilhelm Koch

Authorized examiners
- Alle hier genannten

Module counseling
- Hans Gerd Nothwang
- Kathrin Thedieck
- John Neidhardt
- Anna-Maria Hartmann

Entry requirements

Skills to be acquired in this module
+ Neurosci. knowlg. Expt. methods
+ Independent research
+ Scient. literature
+ Social skills
+ Interdiscipl. knowlg.
+ Maths/Stats/Progr. Data present./disc.
+ Scientific English
+ Ethics

For students putting emphasis on cell biological, molecular biological, genetic, biochemical and/or neurobiological fields. The module can serve the purpose of preparing for a Master’s thesis.

Upon successful completion of this course, students will have an advanced knowledge in molecular cell biology, have acquired methodological and experimental skills in molecular cell biology, have an advanced knowledge of how to perform research projects, have advanced skills in presenting and discussing scientific data they have obtained, analysed and put in a wider framework of a current scientific topic.

Module contents

Theory and practice of topics related to issues in molecular sensory neuroscience; independent treatment of an individual project; acquiring an advanced theoretical knowledge in selected fields of the molecular biology of the cell (points of emphasis: genetics, biochemistry, cell biology; topics depending on working groups).

There are several options for the lab projects, in the broad categories of:
1. Protein function in neurosensory signaling (Koch)
 - Heterologous expression in cell cultures of a protein involved in visual transduction or magnetoreception
2. Neurosensory genetics (Nothwang)
3. Metabolic signalling networks (Thedieck)
4. Human genetics: mutation identification, pathogenic processes and therapy development (Neidhardt)

Reader’s advisory

Specific literature of the topics indicated above; original papers related to the current research question; will be different for every student and every year.

Textbooks of Cell Biology, Biochemistry, Genetics:
- Alberts et al. Molecular Biology of the Cell (5th Edition or later); Stryer Biochemistry (7th Edition or later); Lehninger Biochemistry (4th Edition or later). These textbooks are updated almost every 3 or 4 years.

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Reference text
Time is flexible and subject to individual arrangement. An accepted internship report and participation in a joint poster presentation of concurrent research modules are required to pass the module.

Modullevel
MM (Mastermodul)

Modulart
Wahlpflicht

Examination

Final exam of module
Time of examination: as agreed; usually within 2 months of the conclusion of lab work

Type of examination: oral exam of 30 min. in Cell Biology, Genetics or Biochemistry, depending on the chosen option

Participation in seminar,
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Signed project report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Projektorientiertes Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>10.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>140 h</td>
</tr>
</tbody>
</table>