pre316 - Biomass Energy & Hydro Energy

Module label Biomass Energy & Hydro Energy
Module code pre316
Credit points 3.0 KP
Workload 90 h
Used in course of study Master's Programme European Master in Renewable Energy (EUREC) > Mastermodule
Contact person
- Carsten Agert
- Alexandra Pehlken
- Hans-Gerhard Holtorf
- Robin Knecht

Entry requirements

Skills to be acquired in this module
- After the completion of this module the student will
 - have a good understanding the potential of Biomass as an energy carrier
 - be able to critically assess the sustainability of biomass, and hence the advantages and limits of biomass to energy
 - have a good understanding of the main technical components of micro hydro power, tidal power, and wave power systems
 - be able to size a Micro-hydro Power Plant for a given local geographic and hydrological conditions
 - be able to critically assess advantages and disadvantages of micro hydro power, tidal and wave power systems in comparison with other renewable energy technology from a technical point of view

Module contents

Biomass Energy:
- introduction into Photosynthesis, chemical storage of solar energy, efficiency of various
- composition of biomass: sugar, starch, protein, fats, lignin
- typical soil conditions and the relation to plant growth, energy content of different plants
- typical energy plants in various regions and climates
- biomass usage in various geographical and climate regions
- traditional and modern technologies of energy biomass usage and its efficiency
- degradation processes of biomass: micro-organisms, classification and metabolism

Hydro Energy:
- theoretical background (general hydraulic terms, Bernoulli equation, major empirical formulae)
- water resource (catchment area, seasonal precipitation, flow duration curve, dam and run off river)
- marine resource (tides and waves, time dependency, energy & power content)
- powerhouse (penstock, water hammer, cavitation, tailrace)
- turbines (main types of turbines, their characteristics & their components)
- generators (main types of generators & their characteristics)
- control System (adaptation power input and load)

Lab Work:
- acceptance test of a centrifugal pump

Reader's advisory

Biomass
Bagain, Sundar & Shakya Idira, 2005: A successful Model of Public Private Partnership for Rural Household Energy Supply,
Bhojvaid, P.: Biofuels towards a greener and secure energy supply, Rajkamal electric Press, Delhi.
Biomass Energy Data Book of the US Department of Energy for Download:
FAO:

Hydro Energy

Links
Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Module level MM (Mastermodul)
Module art Pflicht
Lern-/Lehrform / Type of program Lecture, Excursion

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Hydro Power: At the end of lecture period (end of January)</td>
<td>Hydro Power (30%): Written exam (1 hour)</td>
</tr>
<tr>
<td></td>
<td>Biomass: At the end of lecture period (end of January)</td>
<td>Biomass (40%): Written exam (1 hour)</td>
</tr>
<tr>
<td></td>
<td>Pump Lab: During Semester</td>
<td>Pump Lab (30%): Written report (10 - 20 pages)</td>
</tr>
</tbody>
</table>

Course type Seminar

SWS
Frequency
Workload attendance 0 h