neu250 - Computational Neuroscience - Statistical Learning

Module label
Computational Neuroscience - Statistical Learning

Module code
neu250

Credit points
6.0 KP

Workload
180 h

Used in course of study
- Master's Programme Neuroscience > Background Modules

Contact person

Module responsibility
- Jutta Kretzberg

Authorized examiners
- Alle hier genannten

Module counseling
- Jochem Rieger
- Jörn Anemüller

Entry requirements
attendance in pre-meeting

Skills to be acquired in this module
- Neurosci. knowlg. Expt. methods Independent research + Scient. literature + Social skills
- Interdiscipl. knowlg. ++ Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics
- Upon successful completion of this course, students have refined their programming skills (in Matlab) in order to efficiently analyze large-scale experimental data
- are able to implement a processing chain of prefiltering, statistical analysis and results visualization
- have acquired an understanding of the theoretical underpinnings of the most common statistical analysis methods
- have practised using existing toolbox functions for complex analysis tasks
- know how to implement new analysis algorithms in software from a given mathematical formulation
- can interpret analysis results in a neuroscientific context
- have applied these techniques to both single channel and multi-channel neurophysiological data

Module contents
data preprocessing, e.g., artifact detection and rejection, filtering, z-scoring, epoching
-data handling for high-volume data in matlab
-introduction to relevant analysis toolbox software
-theory of multi-dimensional statistical analysis approaches, such as multi-dimensional linear regression, principal component analysis, independent component analysis, logistic regression, gradient-based optimization
-practical implementation from mathematical formulation to software code, debugging and unit testing
-postprocessing and results visualization
-consolidation during hands-on computer-based exercises (in Matlab)
-introduction to selected specialized analysis approaches during the seminar

Reader’s advisory
More text books will be suggested prior to the course.
Scientific articles: Copies of scientific articles for the seminar will be provided prior to the course

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
18

Reference text
Course in the first half of the semester
Students without Matlab experience should take the optional Matlab course (1. week) of Computational Neuroscience - Introduction

Modullevel
MM (Mastermodul)

Lern-/Lehrform / Type of program
Wahlpflicht

Vorkenntnisse / Previous knowledge

Module frequency

Examination
Time of examination during the course
Type of examination Portfolio, consisting of daily short tests, programming exercises and short reports

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload attendance</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td>14 h</td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module