phy600 - Photonics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Photonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>phy600</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
<td></td>
</tr>
<tr>
<td>Used in course of study</td>
<td>- Master's Programme Engineering Physics > Advanced Physics</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>Bert Struve</td>
</tr>
</tbody>
</table>

Entry requirements

Basic knowledge on optics, electrodynamics and atomic physics

Skills to be acquired in this module

Starting from basics, the module yields advanced knowledge of the physics of lasers, of interaction of optical radiation with matter, optoelectronic principles and components as, e.g. laser beams, different laser types, light emitters, detectors, modulators. The students acquire skills in working with lasers and optoelectronic components.

Module contents

Fundamentals of lasers (optical gain, optical resonator, laser beams), laser types, laser safety; electronic bandstructures in matter, semiconductor junctions, radiation laws, light emitting diodes, photodetectors, solar cells

Reader’s advisory

Links

Languages of instruction: German, English

Duration (semesters)

1 Semester

Module frequency

Module capacity

unlimited

Modulart

je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Lecture: 4 hrs/week, practical applications included in lecture

Vorkenntnisse / Previous knowledge

Examination

Time of examination

Type of examination

2 hr written examination or 30 min oral examination or experimental work or homework or presentation

Course type

Lecture

SWS

4.00

Frequency

SuSe or WiSe

Workload attendance

56 h