pre325 - Wind Potential, Aerodynamics & Loading of Wind Turbines

<table>
<thead>
<tr>
<th>Module label</th>
<th>Wind Potential, Aerodynamics & Loading of Wind Turbines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>pre325</td>
</tr>
<tr>
<td>Credit points</td>
<td>7.5 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>225 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) > Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>At the completion of this module, the student will:</td>
</tr>
<tr>
<td></td>
<td>• possess advanced knowledge on wind potential, aerodynamics and loading of wind turbines</td>
</tr>
<tr>
<td></td>
<td>• be skilled in simulation programs for design and control of Wind Turbines (GH Bladed), practical experience</td>
</tr>
<tr>
<td></td>
<td>• be skilled in wind potential evaluation, wind farm design and environmental impacts using simulation programs (GH WindFarmer),</td>
</tr>
<tr>
<td></td>
<td>• have an understanding of economic parameters for a successful project realisation</td>
</tr>
</tbody>
</table>

At the completion of this module, the student will:
- possess advanced knowledge on wind potential, aerodynamics and loading of wind turbines
- be skilled in simulation programs for design and control of Wind Turbines (GH Bladed), practical experience
- be skilled in wind potential evaluation, wind farm design and environmental impacts using simulation programs (GH WindFarmer),
- have an understanding of economic parameters for a successful project realisation

Module contents

1. Introduction
 - Status of Wind Energy
 - Status of European Wind Energy and R&D
2. Advanced Wind Structure and Statistics
 - Gusts and gust probability distributions
 - Effects of topography
3. Evaluation of Wind Energy Potential
 - Wind modelling in flat and complex terrain
 - Wind energy siting approaches
4. Wind Turbine Aerodynamics
 - Advanced methods
 - Aerodynamic stall
 - Unsteady aerodynamics
 - Vortex wake structure
 - Advanced wake models
 - Optimum design of wind turbine blades
5. Static and Dynamic Loading of Wind Turbines
 - Aerodynamic and gravity loading
 - Inertial and structural loads
 - Aeroelastic modelling
 - Fatigue of wind turbine blades

Reader's advisory

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modullevel: MM (Mastermodul / Master module)
- Modulart: je nach Studiengang Pflicht oder Wahlpflicht
- Lern-/Lehrform / Type of program: Lectures, Tutorials, Workshop, Laboratory
- Vorkenntnisse / Previous knowledge:
- Examination: Final exam of module
 - Time of examination: Exam week (end of May)
 - Type of examination: Written exam (3 hours)
<table>
<thead>
<tr>
<th>Course type</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>0 h</td>
</tr>
</tbody>
</table>