inf307 - Robotics

Module label: Robotics
Module code: inf307
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master's Programme Computing Science > Nicht Informatik
- Master's Programme Computing Science > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems > Systems Engineering

Contact person:

- Module responsibility: Andreas Hein
- Authorized examiners: Die im Modul Lehrenden

Entry requirements:

Skills to be acquired in this module:

Professional competence:
The students:

- Name and know the functions and applications of robot systems
- Characterise the basic concepts to program robot systems
- Differentiate between the interaction of mechanical, electrical and software components

Methodological competence:
The students:

- Define characteristics and components of robot systems for a specific application
- Design and implement robot system sub-components
- Design and parameterise simple control structures
- Plan the application of robot systems and derive the requirements
- Model electrical and mechanical systems
- Develop and realise simple robot systems

Social competence:
The students:

- Solve robot systems problems in team work

Self-competence:
The students:

- Reflect their solutions in reference to robot system methods

Module contents:

- Integration in production plants / aims / subsystems
- Architectures / classifications (classification of robots)
- Robot components + Computer systems for programming
 - PA-10
 - Lego Mindstorms
- Basics of kinematics
 - Coordinate transformation, homogeneous coordinates, Coordinate transitions
 - Kinematic equation systems, transformation of vectors
- Kinematic
 - Joint types (manipulators) / Wheels, TCP
- Denavit-Hartenberg-Transformation
- Forward calculation
- Backward calculation

- Sensors
 - General properties of sensors, parameter
 - Simple optical position sensors
 - Inductive-, capacitive- und ultrasonic-sensors
 - Distance sensors (laser scanner, triangulation sensors)
 - Force sensors
 - Sensor data preparation

- Planning / Regulation
 - Overall regulation approach, terms, process- and control functions, PID-controller
 - Planning concepts and approaches (On-Line, Off-Line), planning processes, construction and path planning

- Actuators

Reader's advisory

essential:
lecture nodes

recommended:

secondary literature:

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
unlimited

Modulelevel
AS (Akzentsetzung / Accentuation)

Modulart
Pflicht o. Wahlpflicht / compulsory or optional

Lern-/Lehrform / Type of program
V+U

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3.00</td>
<td>SuSe</td>
<td>42 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
<td>SuSe</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
56 h