pre061 - Renewable Energy Complementary Topics

pre061 - Renewable Energy Complementary Topics

Institute of Physics 6 KP
Module components Semester courses Sommersemester 2019 Examination
Lecture
  • No access 5.04.4063 - Introduction to Photovoltaics Show lecturers
    • Dr. Levent Gütay

    Tuesday: 08:00 - 12:00, weekly (from 02/04/19), V+Ü

    Auf Basis thermodynamischer und halbleiter/ festkörperphysikalischer Grundlagen sollen die Studierenden ein fundiertes Verständnis der photovoltaischen Energiewandlung sowie der elementaren Verlustprozesse in photovoltaischen Bauelementen erlangen und dabei ihre bisher erlangten Studienkenntnisse in den o.g. Disziplinen sicher anwenden. Aus diesem Wissen sollen die Studierenden wesentliche Randbedingungen zur Konzeption einer Solarzelle mit hohem Wirkungsgrad ableiten und qualitativ das Betriebsverhalten (Beleuchtungs- und Temperatureffekte) unter realen Bedingungen voraussagen können. Die Teilnehmer sollten darüber hinaus in der Lage sein, Anforderungen an die verwendeten Halbleitermaterialien (z.B. Dotierung, Tiefengradierung bestimmter Materialeigenschaften) und die internen Grenzflächen der Solarzelle physikalisch zu begründen. Neben grundlagenorientierten und materialwissenschaftlichen Kenntnissen zur Photovoltaik erwerben die Studierenden technisch geprägte Inhalte zum Funktionsprinzip und zur Konzeption von Photovoltaikmodulen sowie zur Systemtechnik photovoltaischer Anlagen. Inhalte: Festkörper- / halbleiterphysikalische Grundlagen, das solare Spektrum, Leistungsdichte, Absorption und Emission von Licht in Halbleitern, Generation und Rekombination, Gleichgewicht und Nichtgleichgewicht, Ladungstransport, Quasi-Fermi-Niveaus, Elektrostatik des pn-Übergangs, Majoritäten- und Minoritätenströme im pn-Übergang im Gleichgewicht und unter Beleuchtung, Sammeleffizienz, geometrische Auslegung des pn-Übergangs, Strom-Spannungs-Charakteristik, Halbleiter-Heterokontakte, pin-Strukturen, Strategien zur Optimierung der Solarzelleneffizienz, Technologieüberblick in der Photovoltaik

  • No access 5.04.4064 - Advanced Solar Energy Meteorology Show lecturers
    • Dr. Detlev Heinemann

    Tuesday: 14:00 - 16:00, weekly (from 02/04/19)

  • No access 5.04.4071 - Fluid Dynamics II / Fluiddynamik II Show lecturers
    • Prof. Dr. Joachim Peinke

    Wednesday: 08:00 - 10:00, weekly (from 03/04/19)

    Das zentrale Thema dieser Vorlesung sind turbulente Strömungen. Es werden Aspekte der numerischen Modellierung als auch der statistischen Charakterisierung behandelt (Reynolds-Gleichung, Schließungsproblem und Schließungsansätze, Turbulenzmodelle: Kaskadenmodelle - Stochastische Modelle) Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."

  • No access 5.04.4234 - Wind Physics Measurement Project Show lecturers
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Matthias Wächter
    • Prof. Dr. Joachim Peinke

    Monday: 12:00 - 14:00, weekly (from 01/04/19)

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

  • No access 5.04.4236 - Aeroelastic Simulation of Wind Turbines for EWEM Show lecturers
    • Prof. Dr. Martin Kühn
    • Binita Shrestha

    Tuesday: 16:00 - 18:00, weekly (from 02/04/19)

    A student who has met the objectives of the course will be able to: o understand the basic concept of an aero-servo-elastic computer code to determine the unsteady aerodynamic loads, o derive and validate the required parameters to model the aero-hydro-elastic response of a wind turbine, o identify and interpret the required empirical parameters to correct the blade element momentum (BEM) method with respect to dynamic inflow, unsteady airfoil aerodynamics (dynamic stall), yawed flow, dynamic wake modeling, o explain the effects of the different models on the resulting time series and validate the code, o interpret design standards for on- and offshore wind turbines, select the required load cases according to site-specific environmental data, o identify the dimensioning load cases and calculate design loads for different main components of a wind turbine. Contents: The course focuses on the practical implications and hands-on experience of the aero-hydro-servo-elastic modelling and simulation of wind turbines. The subjects are similar but the treatment is complementary to the parallel course ‘Design of Wind Energy Systems’, which deals with the underlying theo-retical background: o advanced wind field modelling for fatigue and extreme event loading, o modelling of wind farm flow and wake effects, o rotor aerodynamics (e.g. stationary or dynamic effects, comparison of Blade Element Momentum theory and more advanced methods like free vortex methods or CFD), o structural dynamics and dynamic modelling of wind tur-bine structures (modelling by ordinary or partial differential equations, stochastics, multi body system modelling), o advanced control of wind turbines, o design standards, design loads and design aspects of offshore and onshore wind turbines. The students analyse in pairs a model of an entire wind turbine with the aid of a typical wind turbine design tool like GH Bladed, Flex5 or Aerodyn/FAST.

  • No access 5.06.109 - Simulation of Renewable Energy Systems Show lecturers
    • Robin Knecht
    • Dr.-Ing. Herena Torio

    Monday: 10:15 - 11:45, weekly (from 01/04/19)

    Introduction to Software for the Simulation of Renewable Energy Systems

  • No access 5.06.205 - Wind Energy Applications - from Wind Resource to Wind Farm Applications Show lecturers
    • Dr. Hans-Peter Waldl

    Friday: 08:00 - 10:00, weekly (from 05/04/19)
    Dates on Friday, 17.05.2019 10:15 - 11:45

    The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects. Contents: Assessment of the resource wind energy: Weibull distribution, measurement of wind speeds to determine the energy yield, fundamentals of the WAsP method, partial models of WAsP, MCP method for long-term correction of measured wind data in correlation with long-term reference data, conditions for stable, neutral and instable atmospheric conditions, wind yield assessments from wind distribution and power curve, fundamentals of determining the annual wind yield potentials of individual single-turbine units. Tracking effects and wind farms: Recovery of the original wind field in tracking flow of wind turbines, fundamentals of the Risø model, distance spacing and efficiency calculation of wind turbines in wind farms, fundamentals of offshore wind turbines, positive and negative effects of wind farms. Operating wind farms: Influences on the energy yield of the power efficiency of wind farms, three-column model of sustainability: “magic triangle”, profit optimization for increased energy production

  • No access 5.06.302 - Photovoltaic Systems Show lecturers
    • Hans-Gerhard Holtorf, PhD
    • Robin Knecht
    • Prof. Dr. Jürgen Parisi

    Thursday: 14:00 - 16:00, weekly (from 04/04/19)

  • No access 5.06.306 - Future Power Supply (Lecture) Show lecturers
    • Prof. Dr. Carsten Agert
    • Babak Ravanbach

    Monday: 14:00 - 16:00, weekly (from 01/04/19)

  • No access 5.06.600 - Laboratory: Performance of Renewable Energy Show lecturers
    • Robin Knecht
    • Hans-Gerhard Holtorf, PhD

    Friday: 13:00 - 18:00, weekly (from 05/04/19)

  • No access 5.06.606a - Resilient Energy Systems Show lecturers
    • Dr.-Ing. Herena Torio
    • Michael Golba

    Tuesday: 10:00 - 12:00, weekly (from 02/04/19)

    “We live in a complex world. Anyone with a stake in managing some aspect of that world will benefit from a richer understanding of resilience and its implications” (Walker, Brian /Salt, David, Resilience Thinking: Sustaining Ecosystems and People in a Changing World, Washington, DC: Island Press, 2006) The transformation of the socio-technical energy supply system is a prime example of an enormously complex process. Besides the development and integration of new technologies and system components related to cope with the increasing share of variable renewable energy sources, issues regarding the system structure and behaviour are becoming ever more relevant: the overcome of the one dimensionality of the generation – consumption architecture of the system, including sector coupling strategies, or the participation of actors and their interest, will strongly shape the future energy system. Each of these issues will take their share to increase the network character and complexity of the system. The increase and format of complexity is strongly related to higher uncertainty and risk, requiring different analysis, controlling and management strategies. Resilience approaches, trying to analyze the response of such a complex system to different stress situations, may help to tackle some of these requirements. The lecture series “Resilient Energy Systems” provides the theoretical background for understanding main concepts and interdisciplinary scientific methods to apply the concept of resilience to energy systems. In order to set the scene a sound and comprising introduction into its roots and different fundamental concepts for understanding current resilience research is given. This is followed by lectures from different experts, focusing each on a particular dimension, method or application context within the field of resilience research. The topics covered by the expert lectures range from electric grid flexibility requirements to risk absorption mechanisms, vulnerability analysis to participation and governance issues, ciber-resilience research or modelling approaches for grid resilience. Experts from the University of Oldenburg such as Prof. Ulrike Feudel, Prof. Joachim Peinke, Prof. Sebastian Lehnhoff or Alexandra Unger as well as external experts like Dr. Urte Brandt (DLR-VE), Dr. Oriol Raventos (DLR-VE) or Mariela Tapia (University of Bremen) are some of the inspiring speakers participating in the lecture series. Each expert lecture is followed by a related seminar in order dive deeper into the particular resilience aspect and facilitate the active engagement of the students. The whole course is composed of the lectures and the seminars, corresponding to 6 CP (Lecture (in StudIP: 5.06.606a) & Seminar (in StudIP: 5.06.606b) – 180 h workload) Main learning outcomes: - Understand different conceptional resilience approaches in the context of RE systems development - Understand strengths and blackspots in the application of resilience or different concepts related to it (e.g. robustness, vulnerability) to the energy system - Understand interdisciplinary dependences and concepts required for designing resilient RE systems: address technical and non technical dimensions of resiliency assessment (economy, participation, …) - Get to know different methods and metrics for assessing/quantifying the concept of resilience for RE systems design - Understand and critically argue on the suitability of methods for resilience assessment in the context of RE systems

  • No access 5.06.606b - Resilient Energy Systems Show lecturers
    • Dr.-Ing. Herena Torio
    • Michael Golba

    Tuesday: 08:00 - 10:00, weekly (from 02/04/19)

    “We live in a complex world. Anyone with a stake in managing some aspect of that world will benefit from a richer understanding of resilience and its implications” (Walker, Brian /Salt, David, Resilience Thinking: Sustaining Ecosystems and People in a Changing World, Washington, DC: Island Press, 2006,) The transformation of the socio-technical energy supply system is a prime example of an enormously complex process. Besides the development and integration of new technologies and system components related to cope with the increasing share of variable renewable energy sources, issues regarding the system structure and behaviour are becoming ever more relevant: the overcome of the one dimensionality of the generation – consumption architecture of the system, including sector coupling strategies, or the participation of actors and their interest, will strongly shape the future energy system. Each of these issues will take their share to increase the network character and complexity of the system. The increase and format of complexity is strongly related to higher uncertainty and risk, requiring different analysis, controlling and management strategies. Resilience approaches, trying to analyze the response of such a complex system to different stress situations, may help to tackle some of these requirements. The lecture series “Resilient Energy Systems” provides the theoretical background for understanding main concepts and interdisciplinary scientific methods to apply the concept of resilience to energy systems. In order to set the scene a sound and comprising introduction into its roots and different fundamental concepts for understanding current resilience research is given. This is followed by lectures from different experts, focusing each on a particular dimension, method or application context within the field of resilience research. The topics covered by the expert lectures range from electric grid flexibility requirements to risk absorption mechanisms, vulnerability analysis to participation and governance issues, ciber-resilience research or modelling approaches for grid resilience. Experts from the University of Oldenburg such as Prof. Ulrike Feudel, Prof. Joachim Peinke, Prof. Sebastian Lehnhoff or Alexandra Unger as well as external experts like Dr. Urte Brandt (DLR-VE), Dr. Oriol Raventos (DLR-VE) or Mariela Tapia (University of Bremen) are some of the inspiring speakers participating in the lecture series. Each expert lecture is followed by a related seminar in order dive deeper into the particular resilience aspect and facilitate the active engagement of the students. The whole course is composed of the lectures and the seminars, corresponding to 6 CP (Lecture (in StudIP: 5.06.606a) & Seminar (in StudIP: 5.06.606b) – 180 h workload) Main learning outcomes: - Understand different conceptional resilience approaches in the context of RE systems development - Understand strengths and blackspots in the application of resilience or different concepts related to it (e.g. robustness, vulnerability) to the energy system - Understand interdisciplinary dependences and concepts required for designing resilient RE systems: address technical and non technical dimensions of resiliency assessment (economy, participation, …) - Get to know different methods and metrics for assessing/quantifying the concept of resilience for RE systems design - Understand and critically argue on the suitability of methods for resilience assessment in the context of RE systems

Seminar und Übung
  • No access 13.01.015 - Deutschkurs 5 (Stufe B1.1) Show lecturers
    • Anna-Lena Schmidt

    Wednesday: 16:00 - 20:00, weekly (from 03/04/19), Location: A06 0-004
    Friday: 14:00 - 16:00, weekly (from 05/04/19), Location: A06 0-004
    Dates on Friday, 14.06.2019, Friday, 21.06.2019 16:00 - 18:00, Location: A06 0-003 (Multimediaraum)

  • No access 13.01.017 - Deutschkurs 6 A (Stufe B1.2) Show lecturers
    • Inessa Vogel

    Wednesday: 16:00 - 20:00, weekly (from 03/04/19), Location: A01 0-005
    Friday: 14:00 - 16:00, weekly (from 05/04/19), Location: A06 0-009
    Dates on Friday, 03.05.2019 16:00 - 18:00, Location: A06 0-009

  • No access 13.01.019 - Deutschkurs 6 B (Stufe B1.2) Show lecturers
    • Burçin Amet, (sie/ihr)

    Wednesday: 16:00 - 20:00, weekly (from 03/04/19)
    Friday: 14:00 - 16:00, weekly (from 05/04/19)
    Dates on Saturday, 29.06.2019 09:00 - 16:00, Wednesday, 10.07.2019 16:00 - 20:00, Friday, 12.07.2019 14:00 - 16:00

  • No access 13.01.019a - Deutschkurs 6 C (Stufe B1.2) Show lecturers
    • Wiebke Weinreich

    Wednesday: 16:00 - 19:30, weekly (from 03/04/19), Location: A14 1-114
    Friday: 14:00 - 16:00, weekly (from 05/04/19), Location: A10 1-121a, A10 1-121 (Hörsaal F)
    Dates on Friday, 17.05.2019, Friday, 31.05.2019 14:00 - 17:00, Location: A10 1-121a

  • No access 13.01.022 - Deutschkurs 7 (Stufe B2.1) Show lecturers
    • Dr. Maria Egbert

    Wednesday: 16:00 - 20:00, weekly (from 03/04/19), Location: A06 5-531
    Friday: 14:00 - 16:00, weekly (from 05/04/19), Location: A06 0-011

  • No access 13.01.023 - Deutschkurs 8 (Stufe B2.2) Show lecturers
    • Daniela Rommel

    Wednesday: 16:00 - 20:00, weekly (from 03/04/19)
    Friday: 14:00 - 16:00, weekly (from 05/04/19)

  • No access 2.12.133 - International Environmental Governance Show lecturers
    • Prof. Dr. Bernd Siebenhüner
    • Bernd Hackmann
    • Alkje Wegner

    Dates on Friday, 05.04.2019 12:00 - 16:00, Friday, 14.06.2019 14:00 - 20:00, Saturday, 15.06.2019 10:00 - 18:00, Location: V03 0-E002, V03 0-E003
  • No access 5.04.4063 - Introduction to Photovoltaics Show lecturers
    • Dr. Levent Gütay

    Tuesday: 08:00 - 12:00, weekly (from 02/04/19), V+Ü

    Auf Basis thermodynamischer und halbleiter/ festkörperphysikalischer Grundlagen sollen die Studierenden ein fundiertes Verständnis der photovoltaischen Energiewandlung sowie der elementaren Verlustprozesse in photovoltaischen Bauelementen erlangen und dabei ihre bisher erlangten Studienkenntnisse in den o.g. Disziplinen sicher anwenden. Aus diesem Wissen sollen die Studierenden wesentliche Randbedingungen zur Konzeption einer Solarzelle mit hohem Wirkungsgrad ableiten und qualitativ das Betriebsverhalten (Beleuchtungs- und Temperatureffekte) unter realen Bedingungen voraussagen können. Die Teilnehmer sollten darüber hinaus in der Lage sein, Anforderungen an die verwendeten Halbleitermaterialien (z.B. Dotierung, Tiefengradierung bestimmter Materialeigenschaften) und die internen Grenzflächen der Solarzelle physikalisch zu begründen. Neben grundlagenorientierten und materialwissenschaftlichen Kenntnissen zur Photovoltaik erwerben die Studierenden technisch geprägte Inhalte zum Funktionsprinzip und zur Konzeption von Photovoltaikmodulen sowie zur Systemtechnik photovoltaischer Anlagen. Inhalte: Festkörper- / halbleiterphysikalische Grundlagen, das solare Spektrum, Leistungsdichte, Absorption und Emission von Licht in Halbleitern, Generation und Rekombination, Gleichgewicht und Nichtgleichgewicht, Ladungstransport, Quasi-Fermi-Niveaus, Elektrostatik des pn-Übergangs, Majoritäten- und Minoritätenströme im pn-Übergang im Gleichgewicht und unter Beleuchtung, Sammeleffizienz, geometrische Auslegung des pn-Übergangs, Strom-Spannungs-Charakteristik, Halbleiter-Heterokontakte, pin-Strukturen, Strategien zur Optimierung der Solarzelleneffizienz, Technologieüberblick in der Photovoltaik

  • No access 5.04.4064 - Advanced Solar Energy Meteorology Show lecturers
    • Dr. Detlev Heinemann

    Tuesday: 14:00 - 16:00, weekly (from 02/04/19)

  • No access 5.04.4065 - Advanced Wind Energy Meteorology Show lecturers
    • Dr. Detlev Heinemann

    Wednesday: 12:00 - 14:00, weekly (from 03/04/19), Location: W33 0-003, W33 0-001 (alpha)

  • No access 5.04.4071Ü - Übung zu Fluid Dynamics II / Fluiddynamik II Show lecturers
    • Prof. Dr. Joachim Peinke

    Wednesday: 10:00 - 12:00, weekly (from 10/04/19)

  • No access 5.04.4234 - Wind Physics Measurement Project Show lecturers
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Matthias Wächter
    • Prof. Dr. Joachim Peinke

    Monday: 12:00 - 14:00, weekly (from 01/04/19)

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

  • No access 5.06.302 - Photovoltaic Systems Show lecturers
    • Hans-Gerhard Holtorf, PhD
    • Robin Knecht
    • Prof. Dr. Jürgen Parisi

    Thursday: 14:00 - 16:00, weekly (from 04/04/19)

  • No access 5.06.306b - Future Power Supply (Seminar) Show lecturers
    • Prof. Dr. Carsten Agert

    Tuesday: 16:00 - 18:00, weekly (from 02/04/19)

  • No access 5.06.600 - Laboratory: Performance of Renewable Energy Show lecturers
    • Robin Knecht
    • Hans-Gerhard Holtorf, PhD

    Friday: 13:00 - 18:00, weekly (from 05/04/19)

Hinweise zum Modul
Module examination
2 Prüfungsleistungen: Das Modul ist unbenotet, jedoch müssen 2 der möglichen Kurse mindestens als ‚bestanden‘ gewertet werden um das Modul zu bestehen. Mögliche Prüfungsformen sind: Klausur (1 h), mündliche Prüfung (20 min), Referat (10 Seiten Ausarbeitung + 10 Minuten Präsentation), Hausarbeit (max. 20 Seiten), fachpraktische Übung (max. 8), Seminararbeit (max. 20 Seiten), Portfolio, Präsentation (15 min.) In Seminaren wird Aktive Teilnahme (siehe Ergänzung zu „§ 9 Abs. (6) ) gefordert..
Skills to be acquired in this module

After completing the module students will be able to:

-        describe basic knowledge in two of a wide field of disciplines (technical, scientific, social, political, transferrable, language) as required for the implementation of renewable energy

-        critically discuss basic principles of the implementation of renewable energy
-        justify their personal decision on educational fields for their career development


Top