phy662 - Specialization III

phy662 - Specialization III

Institut für Physik 6 KP
Modulteile Semesterveranstaltungen Sommersemester 2017 Prüfungsleistung
Vorlesung
  • Kein Zugang 2.01.303 - Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation Lehrende anzeigen
    • Prof. Dr. Sergej Fatikow
    • Tobias Tiemerding, M. Sc.
    • Marius Knaust

    Montag: 14:00 - 16:00, wöchentlich (ab 03.04.2017), Ort: A05 1-160
    Donnerstag: 14:00 - 16:00, wöchentlich (ab 06.04.2017), V/Ü, Ort: A04 2-221
    Termine am Montag, 07.08.2017 10:45 - 12:45, Montag, 07.08.2017 11:45 - 12:30, Dienstag, 08.08.2017 09:30 - 11:45, Dienstag, 08.08.2017 ...(mehr), Ort: ((A1-3-310))

  • Kein Zugang 2.01.511 - Smart Grid Management Lehrende anzeigen
    • Prof. Dr. Sebastian Lehnhoff
    • Astrid Niesse
    • Jörg Bremer

    Montag: 08:00 - 10:00, wöchentlich (ab 03.04.2017), Vorlesung
    Donnerstag: 08:00 - 10:00, wöchentlich (ab 06.04.2017)
    Termine am Dienstag, 11.07.2017 13:00 - 17:00, Freitag, 14.07.2017 12:00 - 16:00, Montag, 17.07.2017 10:00 - 13:00, Mittwoch, 19.07.2017, Dienstag, 25.07.2017 10:00 - 15:00, Donnerstag, 27.07.2017 09:00 - 12:00

    Beachten Sie bitte die Informationen der Veranstaltung im Stud.IP

  • Kein Zugang 5.04.301 - Photovoltaics Lehrende anzeigen
    • Nicolay Radychev

    Dienstag: 14:00 - 16:00, wöchentlich (ab 04.04.2017), Ort: W03 2-240
    Termine am Montag, 26.06.2017 14:00 - 16:00, Dienstag, 08.08.2017 14:00 - 16:30, Ort: W04 1-172, W03 1-156

    The course covers the basic physics of solar cells as well as their commercial application. The photovoltaic energy conversion as well as the loss mechanisms in solar cells will be discussed on the basis of thermodynamics, semiconductor and solid-state physics. The students will learn to assess different kinds of PV technologies as well as the potential of photovoltaics for world’s energy supply. Contents: solar spectrum, energy and power density, principles of solid state and semiconductor physics, absorption and emission of light in semiconductors, generation and recombination in equilibrium and nonequilibrium, charge transport, quasi-Fermi levels, electrostatics of the pn-junction, majority and minority carrier, characterization, current-voltage characteristic, strategies to optimize the solar cell efficiency, technology overview, crystalline silicon solar cells, amorphous silicon, CdTe, CIGS, concentrator cells, modules

  • Kein Zugang 5.04.317 - Biomedizinische Physik und Neurophysik Lehrende anzeigen
    • Prof. Dr. Björn Poppe
    • Dr. Stefan Uppenkamp, Dipl.-Phys.
    • Prof. Dr. Dr. Birger Kollmeier
    • Thomas Brand

    Montag: 12:00 - 14:00, wöchentlich (ab 03.04.2017), Ort: W02 1-148
    Freitag: 08:00 - 10:00, wöchentlich (ab 07.04.2017), Ort: W02 1-148, W01 0-015
    Termine am Mittwoch, 05.07.2017 14:00 - 16:00, Donnerstag, 13.07.2017 16:00 - 18:00, Ort: W03 1-161, W02 1-148

    Students are expected to gain an overview of bio-medical physics. They shall understand the activities of physicists in medicine and be able to analyse current research topics of medical physics. Content: Medical bases: Anatomy and physiology of humans, sense and neuro physiology, Psychophysics, pathophysiology of select organ systems, pathology of select diseases, physics in the biomedicine: Methods of biophysics and neuro physics, Roentgen diagnostics, radiotherapy, nuclear medicine, tomography, the medical acoustics/ultrasonic, medical optics and laser applications, Audiology

  • Kein Zugang 5.04.4012 - Informationsverarbeitung und Kommunikation Lehrende anzeigen
    • Priv.-Doz. Dr. Jörn Anemüller

    Dienstag: 08:30 - 10:00, wöchentlich (ab 11.04.2017), Ort: W04 1-171
    Mittwoch: 12:00 - 14:00, wöchentlich (ab 05.04.2017), Ort: W04 1-171
    Donnerstag: 16:00 - 18:00, wöchentlich (ab 06.04.2017), Ort: W04 1-172, W02 1-148, W04 1-162

    Die Studierenden erlernen, wie statistische Eigenschaften von Signalen zur Lösung von Problemen der Angewandten Physik, insbesondere der Klassifikation, parametrischen Modellierung und Übertragung von Signalen genutzt werden können. Theoretische Lernziele beinhalten damit eine Wiederholung und Festigung statistischer Grundlagen und eine Verständnis von deren Nutzung für Algorithmen unterschiedlicher Zielsetzung und Komplexität. Im praktischen Teil werden Eigenschaften der behandelten Methoden selbständig erarbeitet sowie Algorithmen auf dem Rechner implementiert und auf reale Daten angewendet, so daß der Umgang mit theoretischen Konzepten und ihre praktische Umsetzung erlernt werden. Inhalte: Grundfragen der Informationsverarbeitung (Klassifikation, Regression, Clustering), Lösungsmethoden basierend auf Dichteschätzung und diskriminativen Ansätzen (z.B. Bayes Schätzung, k-nearest neighbour, Hauptkomponentenanalyse, support-vector-machines, Hidden-Markov- Modelle), Grundlagen der Informationstheorie, Methoden der analogen und digitalen Nachrichtenübertragung, Prinzipien der Kanalcodierung und Kompression

  • Kein Zugang 5.04.4063 - Advanced Wind Energy Meteorology Lehrende anzeigen
    • Dr. Detlev Heinemann

    Dienstag: 16:00 - 18:00, wöchentlich (ab 04.04.2017), Vorlesung

  • Kein Zugang 5.04.4064 - Advanced Solar Energy Meteorology Lehrende anzeigen
    • Elke Lorenz

    Termine am Freitag, 05.05.2017 14:00 - 18:00, Samstag, 06.05.2017 09:00 - 18:00, Freitag, 02.06.2017, Freitag, 16.06.2017 14:00 - 18:00, Samstag, 17.06.2017 09:00 - 18:00
    In the first – lecture type - part of this block course the most important physical laws and effects for solar energy meteorology as well as models for solar resource assessment and forecasting will be introduced. A special emphasis will be on evaluation concepts and applications. In the second - seminar type - part of the course the students are asked to get a better understanding of lessons learnt by studying and presenting publications related to solar energy meteorology. The students will learn about: - requirements for solar resource data from different applications - most important physical laws and effects related to solar resource assessment and forecasting - models and measurement devices for solar resource assessment and forecasting - benefits and drawbacks of different models - methods to assess the quality of solar resource data Contents: Applications and requirements for solar resource data, basics of solar radiation, solar radiation models, satellite based irradiance retrieval, solar irradiance measurement devices, models for solar irradiance and power forecasting: numerical weather predictions, models based on cloud motion, statistical models, concepts of evaluation, model comparison.

  • Kein Zugang 5.04.4221 - Grundkurs im Strahlenschutz mit Praktikum Lehrende anzeigen
    • Prof. Dr. Björn Poppe
    • Heiner von Boetticher

    Die Zeiten der Veranstaltung stehen nicht fest.
    Die Studierenden erlangen grundlegende Kenntnisse im Gebiet des Strahlenschutzes. Sie erwerben Fähigkeiten der Bewertung von zivilisatorischen und natürlichen Strahlenexpositionen und deren Vergleich mit Anwendungen in der Medizin. Sie erweitern ihre Kompetenzen im Bereich der Präsentationstechnik durch die Betreuung von kleinen Praktikumsversuchen zum Strahlenschutz. Inhalt: Strahlenphysik, Grundlagen der Dosimetrie, Strahlenschutzgrundsätze, Strahlenschutzverordnung, Natürliche und zivilisatorische Strahlenbelastung, Praktikum im Bereich der Strahlenschutzmesstechnik

  • Kein Zugang 5.04.4227 - Organische Halbleiter und organisch-anorganische Hybridsysteme Lehrende anzeigen
    • Priv.-Doz. Dr. Holger Borchert

    Montag: 14:00 - 16:00, wöchentlich (ab 03.04.2017)

    Die Studierenden sollen im Rahmen dieser Veranstaltung einen Einblick in optoelektronische Bauteile auf Basis leitfähiger Polymere erhalten. Fachliche Kenntnisse sollen dabei bezüglich der physikalischen Grundlagen leitfähiger Polymere, deren Anwendungsmöglichkeiten in optoelektronischen Bauteilen und im Bereich relevanter Charakterisierungsmethoden erworben werden. Darüber hinaus fördert die Veranstaltung den Erwerb weiterer Kompetenzen, beispielsweise ein fächerübergreifendes Denken und die Fähigkeit, sich kritisch mit aktuellen Forschungsergebnissen auseinanderzusetzen. Inhalte: Einführung in Materialien mit konjugierten Pi-Systemen, Struktur und Herstellung von molekularen Kristallen und Dünnschichten, Gitterdynamik in molekularen Festkörpern, elektronische Anregungszustände, Frenkel-Exzitonen, Ladungstransport, organische Elektronik, Hybridsysteme aus konjugierten Polymeren und Halbleiter-Nanopartikeln

  • Kein Zugang 5.04.4235 - Design of Wind Energy Systems Lehrende anzeigen
    • Prof. Dr. Martin Kühn

    Dienstag: 14:00 - 16:00, wöchentlich (ab 04.04.2017)

    The students attending the course will have the possibility to expand and sharpen of their knowledge about wind turbine design from the basic courses. The lectures include topics covering the whole spectrum from early design phase to the operation of a wind turbine. Students will learn in exercises how to calculate and evaluate design aspects of wind energy converters. At the end of the lecture, they should be able to: + estimate the site specific energy yield, + calculate the aerodynamics of wind turbines using the blade element momentum theory, + model wind fields to obtain specific design situations for wind turbines, + estimate the influence of dynamics of a wind turbine, especially in the context of fatigue loads, + transfer their knowledge to more complex topics such as simulation and measurements of dynamic loads, + calculate the economic aspects of wind turbines. Introduction to industrial wind turbine design, + rotor aerodynamics and Blade Element Momentum (BEM) theory, + dynamic loading and system dynamics, + wind field modelling for fatigue and extreme event loading, + design loads and design aspects of onshore wind turbines, + simulation and measurements of dynamic loads, + design of offshore wind turbines, + power quality and grid integration on wind turbines.

  • Kein Zugang 5.04.4586 - Digital Signal Processing Lehrende anzeigen
    • Prof. Dr. Simon Doclo

    Montag: 16:00 - 18:00, wöchentlich (ab 03.04.2017), Ort: W32 1-112, W01 0-008 (Rechnerraum), W15 1-146
    Mittwoch: 10:00 - 12:00, wöchentlich (ab 05.04.2017), Ort: W32 1-112
    Termine am Montag, 10.07.2017 10:00 - 12:00, Mittwoch, 04.10.2017 10:00 - 12:30, Ort: W02 1-148, ((W30-0-033/034))

    Engineering Physics: Alternative für Signal- und Systemtheorie

  • Kein Zugang 5.04.4663 - Physics with Ultrashort Pulses and Intense Light Lehrende anzeigen
    • Ulrich Teubner

    Freitag: 10:00 - 13:30, wöchentlich (ab 07.04.2017)

    Additionally to the lecture lab work will be arranged. The students acquire broad experimental knowledge of the application of intense light from femtosecond and high power laser systems. They should be acquainted with the interaction of intense light with matter in general and with respect to important scientific and technical applications (in industry) such as laser material processing, high field physics (i.e. laser matter interaction at high intensity), laser generated particle and radiation sources of ultrashort duration and/or ultrashort wavelength etc. Content: Femtosecond and high power laser systems and its application, absorption of intense laser light, basics of laser matter interaction at high intensity, diagnostics, applications in micro machining, laser generated ultrashort radiation such as high-order laser harmonics and femtosecond K-alpha-sources and keV and MeV electron and ion sources and their application to micro fabrication micro and nano analysis.; atto physics, strong field physics

  • Kein Zugang 5.04.4664 - Laser Design and Beam Guiding Lehrende anzeigen
    • Bert Struve

    Montag: 14:00 - 18:00, wöchentlich (ab 03.04.2017)
    Termine am Montag, 10.07.2017 14:00 - 16:00

    Students acquire advanced knowledge for the design of lasers and laser systems, they also understand the propagation of laser beams and their forming. Content: Design of different laser types; physics of active and passive laser components; beams and resonators; lab work

  • Kein Zugang 5.04.4667 - Zemax Lehrende anzeigen
    • Prof. Dr. Walter Neu, Dipl.-Phys.

    Mittwoch: 15:00 - 17:00, wöchentlich (ab 05.04.2017), Room: T126
    Termine am Mittwoch, 05.04.2017 15:45 - 16:45

    lecture and project

  • Kein Zugang 5.04.4667_a - Biophotonics and Spectroscopy Lehrende anzeigen
    • Prof. Dr. Walter Neu, Dipl.-Phys.
    • Markus Schellenberg
    • Dr. rer. nat. Sandra Koch

    Dienstag: 12:00 - 14:00, wöchentlich (ab 04.04.2017)

    Application of atomic and molecular spectroscopy at a wide range of fields, e.g. industrial, biosciences, microscopy, pharmaceutical, environmental, trace analysis: 1. Explain the mechanisms of and fundamental distinctions between molecular and atomic spectroscopy 2. Recognise the issues regarding sensitivity and selectivity of molecular and atomic spectroscopy 3. Evaluate the limitations and analytical issues associated with each method 3. Demonstrate analytical application of these atomic and molecular absorption and emission techniques 4. Discriminate the analytical challenges that can be appropriately solved by these spectroscopic techniques

  • Kein Zugang 5.04.711 - Akustik Lehrende anzeigen
    • Prof. Dr. Steven van de Par
    • Prof. Dr. Dr. Birger Kollmeier
    • Dr. Stephan Ewert, Dipl.-Phys.

    Montag: 12:00 - 14:00, wöchentlich (ab 03.04.2017), Ort: W02 1-143, W30 0-027/28
    Donnerstag: 16:00 - 18:00, wöchentlich (ab 06.04.2017), Ort: W02 1-143
    Termine am Dienstag, 18.07.2017 14:00 - 16:00, Ort: W02 1-148

    Schwingungen und Wellen, physikalische Grundlagen der Akustik, Erzeugung und Ausbreitung von Schall, Messung und Bewertung von Schall, Verarbeitung und Analyse akustischer Signale, Akustik von Stimme und Sprache, Sprachpathologie, Schalldämmung und –dämpfung, Raum- und Bauakustik, Elektroakustik, Stoßwellen, Photoakustischer Effekt; ausgesuchte Kapitel der Akustik, der Vibrationen und des Ultraschalls.

  • Kein Zugang 5.06.205 - Wind Energy II - Applications Lehrende anzeigen
    • Dr. Hans-Peter Waldl

    Freitag: 08:00 - 09:30, wöchentlich (ab 05.05.2017)
    Termine am Freitag, 30.06.2017, Freitag, 07.07.2017 16:00 - 18:00, Freitag, 14.07.2017 08:30 - 11:00

    The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects. Contents: Assessment of the resource wind energy: Weibull distribution, measurement of wind speeds to determine the energy yield, fundamentals of the WAsP method, partial models of WAsP, MCP method for long-term correction of measured wind data in correlation with long-term reference data, conditions for stable, neutral and instable atmospheric conditions, wind yield assessments from wind distribution and power curve, fundamentals of determining the annual wind yield potentials of individual single-turbine units. Tracking effects and wind farms: Recovery of the original wind field in tracking flow of wind turbines, fundamentals of the Risø model, distance spacing and efficiency calculation of wind turbines in wind farms, fundamentals of offshore wind turbines, positive and negative effects of wind farms. Operating wind farms: Influences on the energy yield of the power efficiency of wind farms, three-column model of sustainability: “magic triangle”, profit optimization for increased energy production

  • Kein Zugang 5.06.301 - Solar Energy Systems - Electric and Thermal II Lehrende anzeigen
    • Hans-Gerhard Holtorf, PhD
    • Prof. Dr. Jürgen Parisi

    Montag: 08:30 - 12:00, wöchentlich (ab 03.04.2017), Vorlesung

    Students gain knowledge on: • the characteristics of components of solar thermal and photovoltaic systems e.g. solar power conversion, charge controllers, storages, miscellaneous components (pumps, cabling, ...), their individual efficiency, their dynamic behaviour, their cut-in conditions. • the architecture and operation of different solar thermal and photovoltaic systems • the system characteristics • the energy balance of systems • the sensor system for controlling and monitoring of thermal and electric solar systems. Students gain skills on • describing properties of solar system components • monitoring and evaluating solar system components • describing solar systems in their operation, their efficiency, their performance parameters Student’s competence will be • to compare solar thermal systems to solar electric systems in terms of energy output, type of energy output, cut in radiation and dependencies on meteorological input. • to compare solar systems to other renewable energy systems in terms of energy output, type of energy output, cut in radiation and dependencies on meteorological input. On the basis of theoretical knowledge students will be enabled to establish measurement procedures to analyse characteristics of grid connected and stand-alone solar PV systems as well as solar thermal systems. They are skilled to apply standard physical and mathematical formulae to evaluate solar systems. At the end of Solar Energy I and Solar Energy II they will have gained understanding in energy transfer paths and energy loss principles for radiative energy. Students will have gained the competence to analyse and critical review data from solar systems – both electrical and thermal. Components: Description of solar system’s components in stationary and dynamic operation: • their functioning, • the different technologies, • the state of the art • their characteristics and working points - Photovoltaics (PV): PV-cells, generator, charge controller, inverter, storage (batteries) miscellaneous components (cabling, generator stand, electric protection) - Solarthermal: Collectors (flat plate, vacuum tube, concentrating systems), thermal storage, charge controller, miscellaneous components (circulation pumps, piping, heat insulation) Systems: Description of systems in stationary and dynamic operation • technical setup • interaction of components • energy output • loss mechanisms - Photovoltaic Systems: PV stand-alone systems, PV grid connected systems, photovoltaic pumping systems, hybrid systems - Solar Thermal Systems: Domestic hot water supply, heating supporting systems, concentrating solar thermal systems.

  • Kein Zugang 5.06.507 - Energy Systems II Lehrende anzeigen
    • Dr. Detlev Heinemann

    Mittwoch: 10:15 - 11:45, wöchentlich (ab 05.04.2017), Ort: W33 0-003, W01 1-117, (W00 Energielabor)
    Termine am Mittwoch, 05.07.2017 10:15 - 11:45, Ort: A10 1-121 (Hörsaal F)

    Part II: Technologies of the Global Energy System   - Power Plant Technology Basics: Thermodynamic cycles, efficiency, technologies, ...) - Conventional Power Generation: Steam power plants, gas turbines, nuclear - Advanced Power Generation: Combined cycle, co-generation, fuel cells, magneto-hydrodynamic power generation, stirling machine, heat pumps,.. - Electric Power Distribution: Utility grids, distributed generation, integration of RET, .. - Solar Thermal Power Plants: parabolic trough, central receiver) - Geothermal and Ocean Energy

  • Kein Zugang 5.06.607 - Biomass Energy II Lehrende anzeigen
    • Dr. Alexandra Pehlken
    • Prof. Dr. Michael Wark, Dipl.-Chem.

    Mittwoch: 08:30 - 10:00, wöchentlich (ab 05.04.2017), Vorlesung
    Termine am Mittwoch, 21.06.2017 08:00 - 10:00

    Based on Biomass Energy I (Winter term lecture course) potential, application, problems and perspectives for Biomass based energy supply (sub)systems are reviewed. A written exam is held at the end of the lecture period. Details - see http://http://www.uni-oldenburg.de/en/ppre/

Übung
Seminar
  • Kein Zugang 5.04.4022 - Neurophysik Lehrende anzeigen
    • Dr. Stefan Uppenkamp, Dipl.-Phys.
    • Prof. Dr. Volker Hohmann, Dipl.-Phys.

    Dienstag: 16:00 - 18:00, wöchentlich (ab 11.04.2017), Ort: W04 1-172
    Termine am Mittwoch, 21.06.2017 15:00 - 17:00, Ort: W03 1-154

    Die Studierenden erlangen fundierte Kenntnisse in der biomedizinischen Physik mit Überblick über die (Neuro)-Physiologie, erwerben Fertigkeiten zur selbständigen Vertiefung diese Fachkenntnisse und erwerben Kompetenzen für eine Anwendung dieser Fachkenntnisse im Rahmen von Facharbeiten und Projekten in verschiedenen Bereichen der Neurosensorik. Inhalte: Anatomie, Physiologie und Pathophysiologie des Zentralen Nervensystems, Physiologie von Neuronen, Neuronenmodelle, Modelle von Neuronenverbänden und neuronaler Netze, Neuronale Kodierung und Merkmalsextraktion, Neurosensorik (Methoden, Experimente und Modelle neurosensorischer Verarbeitung), Neurokognition (Methoden, Experimente und Modelle neuronaler Verarbeitung bei kognitiven Funktionen), höhere Hirnfunktionen (Handlungssteuerung, Emotionen,...) , aktuelle Forschungsansätze in der Neurokognition aus Sicht der Physik.

  • Kein Zugang 5.04.4052 - Optische Messtechnik Lehrende anzeigen
    • Dr. Gerd Gülker, Dipl.-Phys.

    Mittwoch: 10:00 - 12:00, wöchentlich (ab 05.04.2017)

    Den Studierenden wird ein grundlegender Einblick in die Fülle moderner optischer Messmethoden vermittelt, wobei der Fokus auf aktuelle Entwicklungen und auf Verfahren gesetzt wird, die in der universitären Forschung am Institut für Physik von besonderer Bedeutung sind. Sie erlernen unter Anleitung und anhand von z.T. vorgegebener Fachliteratur zu den jeweiligen Themen die selbstständige Erarbeitung neuartiger Messverfahren und die entsprechende medienunterstütze Präsentation. Es werden sowohl theoretische, als auch praxis- und anwendungsbezogene Kompetenzen vermittelt, die die Studierenden in die Lage versetzen sollen, eigenständige Lösungsansätze für zukünftige messtechnische Herausforderungen zu entwickeln. Inhalte: Themen aus der modernen optischen Messtechnik, wie z.B. Oberflächen- und Entfernungsmesstechniken, Nahfeldmethoden, optische Werkzeuge zur Mikromanipulation, optische Fallen, Interferometrie und Holografie, Laser- und Kurzkohärenz-Messtechnik

  • Kein Zugang 5.04.4079 - Advanced computational fluid dynamics and wind turbine aerodynamics Lehrende anzeigen
    • Dr. Bernhard Stoevesandt

    Mittwoch: 12:00 - 14:00, wöchentlich (ab 05.04.2017), Ort: W33 0-003, V03 0-E003, (W33 2-204)

    The aim is that the students learn how to approach all kinds of real numerical problems in CFD and solve them. Everyone is supposed to be set up to date on the current problems and challenges of CFD in aerodynamics and their solutions. Content: CFD wake modeling, grid generators and computational stability, developing fluid structure interaction solvers, detached eddy simulations (DES), turbulent inflow field generation

  • Kein Zugang 5.04.4234 - Wind Physics Measurement Project Lehrende anzeigen
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Matthias Wächter
    • Andreas Hermann Schmidt

    Mittwoch: 14:00 - 16:00, wöchentlich (ab 05.04.2017), Ort: W33 0-003, W32 1-113, W30 0-033/34 - Belegunsplan in Outlook prüfen

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

  • Kein Zugang 5.04.4237 - Energiemeteorologie Lehrende anzeigen
    • Dr. Lüder von Bremen, Dipl-Met.
    • Dr. Detlev Heinemann
    • Dr. Gerald Steinfeld, Dipl.-Met.

    Montag: 14:00 - 16:00, wöchentlich (ab 03.04.2017)

    Das Seminar vermittelt einen spannenden Einblick in einzelne Gebiete der Meteorologie und deren Anwendung in der Windenergie. In dem Seminar wird Literatur zu aktuellen Forschungsthemen der Windenergiemeteorologie verteilt und von den Teilnehmern im Rahmen eines Vortrages (ca. 30 min) vorgestellt. Die Literatur wird so ausgewählt, dass in einzelnen Vorträgen Grundlagen, Methodik und/oder die Anwendung im Vordergrund steht. Eine Literaturliste wird ca. eine Woche vor Start der Veranstaltung in Stud.IP eingestellt. Die Studierenden erwerben fortgeschrittene Kenntnisse auf dem Gebiet der Energiemeteorologie. Sie erlangen Fertigkeiten zum sicheren und selbstständigen Umgang mit modernen Konzepten und Methoden der Angewandten Physik. Sie erweitern ihre Kompetenzen hinsichtlich der Fähigkeiten zur erfolgreichen Bearbeitung anspruchsvoller Probleme der Angewandten Physik mit modernen experimentellen und numerischen Methoden, zur eigenständigen Erarbeitung von Zugängen zu aktuellen Entwicklungen der Angewandten Physik sowie zum Verständnis übergreifender Konzepte und Methoden der Angewandten Physik. Inhalte: Strahlungsgesetze; Strahlungswechselwirkungsprozesse / Transport in der Atmosphäre; Satellitenfernerkundungsverfahren; Modellierung solarenergiespezifischer Strahlungsgrößen; Vorhersage der Solarstrahlung; Energetik der Atmosphäre; Bewegungsgleichungen, atmosphärische Grenzschicht, Windprofile, Stabilität, Turbulenz, mesoskalige Modellierung, Windenergiepotential, Windleistungsvorhersage.

  • Kein Zugang 5.04.4238 - Wind Physics Student's Lab Lehrende anzeigen
    • Prof. Dr. Martin Kühn
    • Andreas Hermann Schmidt
    • Dr. Detlev Heinemann
    • Prof. Dr. Joachim Peinke

    Freitag: 14:15 - 17:45, wöchentlich (ab 26.05.2017), Ort: W04 1-172
    Termine am Freitag, 19.05.2017 14:15 - 15:45, Ort: W03 1-154

    The “Wind Physics Student’s Lab” aims to foster the learning processes in courses and seminars by own research activities of the students in wind physics. The course is offered in the scope of the initiative FLiF+ (German: “Forschendes Lernen im Focus”) at the University Oldenburg (see https://www.uni-oldenburg.de/flif/) and is organised as seminar with integrated work in the laboratory. Groups of two students each will investigate an individual, self-formulated research question and will be guided by the supervisors through the research-based learning process. In order to introduce the students to current wind energy research, each of three research groups at ForWind – University Oldenburg will supervise one seminar in a certain field. These topical seminars will be offered in subsequent semesters or in parallel. Each semester the available seminars will be announced. The seminar “Dynamcis and control of grid-connected wind turbines“ is related to the work of the research group Wind Energy Systems (WESys). It intends to give a deeper understanding of the control of wind turbines as special case in the field of control engineering. The seminar uses an experimental system which allows to investigate control tasks and interaction mechanisms of the functional chain of wind field, rotor, drive train, generator, transformer and electric grid. The seminar “Wind turbine rotor in turbulent inflow” is connected to the research group Turbulence, Wind Energy and Stochastics (TWIST). In this seminar, turbulent wind fields and their effects on wind turbines will be investigated. The students learn to work with measured data from the open field and perform own experiments with a model of a wind turbine in a turbulent wind tunnel. The seminar “Meteorological station data and numeric modeling” is based on the work of the research group Energy Meteorology (EnMet). Here, the students get a deeper understanding of the atmospheric boundary layer and its characteristics that are important for the utilisation of wind energy (vertical profiles, thermal stability etc.). The seminar offers research based learning by simulation of flow situations and analysis of real measured open-field data from meteorological masts and LIDAR devices by the students. The seminar consists of three main phases with different learning steps: 1st phase: Class-room seminar • building up basic competences • identification of the technical tasks • introduction to current research • introduction to the learning platform • investigating standard situations and functional interaction by means of the experimental system • defining an own research question • defining an experimental strategy • planning the experiment 2nd phase: Laboratory work (1 week) • set-up, execution, data acquisition and decommissioning of the experiment 3rd phase: Evaluation and documentation • evaluating the experiment • documentation with a short report (paper) • presentation

  • Kein Zugang 5.04.4801 - Energy Storage II Lehrende anzeigen
    • Prof. Dr. Carsten Agert
    • Babak Ravanbach

    Montag: 16:00 - 18:00, wöchentlich (ab 24.04.2017)
    Termine am Montag, 10.04.2017 16:00 - 18:00

    The students will acquire an in-depth scientific understanding of a broad range of technologies for the storage of energy. At the same time the participants will improve their skills to understand and work with scientific literature on the basis of up-to-date journal articles and text books. Besides, the seminar talk will give the students the opportunity to further develop their expertise in presenting scientific content to a related audience. Content: The course wants to give an in-depth understanding of several energy storage approaches as efficient and environmentally benign technologies supporting renewable energy implementation. Topics covered are: • Renewable energy fluctuation and architecture of power grids • Electrochemical and non-electrochemical approaches for the storage of electricity • Electrochemical fundamentals of batteries, primary batteries, secondary batteries, system aspects • Storing heat instead of electricity: Heat pumps and co-generation as a bridge between electricity and heat

  • Kein Zugang 5.06.700 - Case Study Lehrende anzeigen
    • Hans-Gerhard Holtorf, PhD
    • Prof. Dr. Jürgen Parisi

    Montag: 13:00 - 16:00, wöchentlich (ab 03.04.2017)

    In this seminar you will design an energy supply system for a typical consumer. Apart from the energy management aspects you will get insights in to site management, economical and social aspects of energy consumption.

Hinweise zum Modul
Prüfungsleistung Modul
Werden entsprechend dem konkreten Thema spezifiziert.
Kompetenzziele
Kennen lernen des aktuellen Forschungsstandes im Spezialgebiet und Erwerb fachlicher Spezialkenntnisse.

Nach oben