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Highlights
The global acceleration of freshwater
salinisation due to human activities
such as agriculture, resource extrac-
tion, and urbanisation and its amplifi-
cation by climate change is unequivocal.
Although research in this field is growing,
there are key aspects at the ecological
and evolutionary levels that remain
unaddressed.

Increasing salinisation is a problem as it
can increase the stress or mortality of
freshwater organisms, leading to a loss
of diversity and/or functionality of fresh-
The widespread salinisation of freshwater ecosystems poses a major threat to
the biodiversity, functioning, and services that they provide. Human activities
promote freshwater salinisation through multiple drivers (e.g., agriculture, re-
source extraction, urbanisation) that are amplified by climate change. Due to
its complexity, we are still far from fully understanding the ecological and evolu-
tionary consequences of freshwater salinisation. Here, we assess current re-
search gaps and present a research agenda to guide future studies. We
identified different gaps in taxonomic groups, levels of biological organisation,
and geographic regions. We suggest focusing on global- and landscape-scale
processes, functional approaches, genetic and molecular levels, and eco-
evolutionary dynamics as key future avenues to predict the consequences of
freshwater salinisation for ecosystems and human societies.
water ecosystems but also the services
and benefits to human societies that
they provide.

We identify the main gaps of recent re-
search and suggest a research agenda
to facilitate future research efforts in
order to achieve a more comprehensive
understanding on freshwater salinisation.
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A global increase in salinity
Salinity, the concentration of dissolved salts in water, is one of the key environmental parameters
shaping aquatic biodiversity worldwide [1]. The global trend in salinisation of freshwater ecosystems
[i.e., freshwater salinisation (FS); Box 1] caused by anthropogenic activities (e.g., agriculture, water
and resource extraction, application of road de-icers, climate change [2]) has the potential to change
the structure and functioning of aquatic communities as well as the benefits that we obtain from
aquatic ecosystems, understood as ecosystems services (see Glossary) or nature’s contributions
to people (e.g., crops, water, climate regulation [3–7]). Moreover, FS has direct economic costs and
may pose risks to humanhealth (e.g., rise in lead concentrations in drinkingwater [8,9]). The scientific
interest in FS has increased during the last two decades [4,9–11], but major knowledge gaps still
exist. Here, we review recent literature on FS (Box S1 in the supplemental information online) to iden-
tify main knowledge gaps (Figure 1) and propose a research agenda (Table 1 and Table S1 in the
supplemental information online) aiming to stimulate future research.

Current knowledge gaps
The current understanding of the impacts of FS is limited from both ecological and evolutionary
perspectives. For example, there is limited focus on the functional, spatial, and trophic conse-
quences of FS and only a few long-term studies exist (but see [12,13]). FS research also suffers
from geographic bias, with only a handful of regions being studied (see later). Furthermore, FS can
be a result of different types of salts or compounds [4,14] that may trigger complex chemical or
biological interactions [10]. Such complexity hinders the development of a common theory of
the consequences and impacts of salinisation that might affect the genetic [15], physiological
[16], community [17], or ecosystem [4,18] levels of biological organisation. Building a common
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Box 1. The problem of freshwater salinisation

Many anthropogenic activities are increasing the quantities of salts and ions entering aquatic systems, generating a wide-
spread salinisation of freshwaters [9,10,20]. Maintaining the osmotic equilibrium between internal fluids and the external
media (e.g., freshwaters, estuaries, seawater) is critical for the survival of aquatic organisms [9,142]. Therefore, salinity is
one of the main drivers of adaptation, speciation, and community assembly in aquatic systems [92,128]. When an external
process (e.g., agriculture leading to salt-polluted surface runoff) changes the ion concentrations and ratios of the external
media, the organisms need to regulate their internal ion concentrations accordingly. However, this ion regulation capacity
(i.e., osmoregulation) has a limit and comes with an energetic cost and if surpassed or maintained in the long term it can
compromise the performance of organisms by causing stress or mortality [10,17,142]. Some organisms have become
more efficient or developed strategies to cope with such stress and are therefore better able to cope either with salinity
fluctuations or with a rise in ionic concentration in the water [80,91]. However, a rise in the ion concentration of freshwaters
(i.e., freshwater salinisation) can also affect other conditions of the habitat where organisms live, as the acidification of
streams [49], the mobilisation of toxic metals through ion exchange [14], the facilitation of invasion of saltwater species
[35], and/or the interference with the natural mixing of lakes [70]. In the end, these changes impact the performance of
organisms and change the conditions of the previous freshwater habitat. This process can lead to the loss of species
and the alteration of community assemblages [17], ecosystem functionalities [39], regional species pools [57], even pH
changes at the continental or global scales [49], among many other consequences. However, all these impacts not only
concern organisms and ecosystem functioning, but they also have an effect on freshwater ecosystem services and their
contribution to humanity [4,7] with a direct impact on social and economic aspects such as potabilisation costs, infrastruc-
ture corrosion, fisheries collapse, and human health [9,21]. Therefore, the problem of freshwater salinisation spans a wide
range of areas and impacts different levels of organisation thatmust be considered in order to properly frame it (see Figure 1
in main text). Its interacting impacts at spatial, temporal, and multiple scales make freshwater salinisation a complex topic.
However, this should not prevent us from taking action and trying to understand it, since human activities are rapidly ex-
acerbating the impacts related to freshwater salinisation [11,14,34,49].
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framework around such a global challenge is mandatory, based on future scenarios of salinisation
andwater scarcity [2,19]. However, the limitations and inherent complexity of FS are still hinder-
ing our ability to assess its extent and consequences [9,20] and to effectively manage it [21,22].

Geographical coverage
Most of the currently available studies and datasets on FS come from North America, Australia,
and Europe [5] (Figure 2), where strong impacts of salinisation occurred in the past [23,24] due
to industrialisation and intensive agriculture. There, salinisation is still ongoing (e.g., abandoned
mines [25], coal extraction [26]) even if current regulations have slowed it down in many cases
[27]. In contrast, FS has been poorly studied in South America, Africa, and Asia (Figure 2),
which is worrying as these are the continents where FS drivers are intensifying. For example, irri-
gation, industrial, and/or resource extraction activities contributing to FS have become increas-
ingly widespread and are expected to expand in countries with poor environmental regulations
following a reallocation of industrial activities [28,29]. Due to the unbalanced geographic coverage
of the available studies, it is difficult to representatively identify FS hotspots (e.g., seawater intru-
sion coupled with wastewater discharges could be leading to severe salinisation in Bangladesh
[30–32]). Another research gap concerns salinisation caused by climate change and its interac-
tive effects with other drivers of salinisation [19,33], a topic that has been almost exclusively studied
in North America, Australia, and Europe (Figure 2). For example, FS amplified bywater scarcity [19] is
particularly important in arid and semi-arid regions (e.g., theMediterranean, Middle East, andCentral
Asia, as highlighted by [3,19,34,35]), but limited datasets are available from these climatic regions
[1,10,20]. Additionally, there is a geographical bias in the studied drivers of FS (Figure 2). For exam-
ple, road de-icing has received great attention in North America [17,36,37] but in comparison, it has
been largely neglected in Europe [38].

Specific habitats
Rivers/streams and lakes have received most of the attention in FS research [39,40], while small
water bodies (e.g., ponds, small shallow lakes, temporary streams) have been largely ignored
[30,31,41] (Box S1 in the supplemental information online). These habitats play a key role for
Trends in Ecology & Evolution, May 2022, Vol. 37, No. 5 441
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Figure 1. Biases and gaps in current salinization literature across scales (left). Main proposed research priorities
based on these gaps and following the proposed research agenda (right). Note that the listed research priorities can be
applied to different scales. Multidisciplinary priorities are considered to affect several scales. Small images and icons were
freely downloaded from IAN Image Library.

Glossary
Chemical cocktails: novel and variable
combinations of anthropogenically
enhanced compounds that are found
together. These compound mixtures are
considered novel because of their
elevated concentrations relative to natural
baseline conditions and due to the
anthropogenically enhanced transport,
formation, and transformation in the
environment.
Eco-evolutionary dynamics: an
integrative field of research that focuses
on how ecological change influences
evolutionary change, how evolutionary
change influences ecological change,
and how those two pathways
(eco-to-evo and evo-to-eco) sometimes
may influence each other.
Eco-hydrological models:
mechanistic models into which
ecological and hydrological information
is integrated and which, based on
climatic scenarios, can predict future
scenarios.
Ecosystems services: the conditions
and processes through which natural
ecosystems, and the species that make
them up, sustain and fulfil human life,
maintaining biodiversity, production of
goods, life-support functions, and
intangible aesthetic and cultural
benefits.
Epigenetic adaptations: adaptations
to a stressor or a phenomenon that
changes the final outcome of a locus or
chromosome without changing the
underlying DNA sequence.
Freshwater salinisation syndrome:
the complex interrelationships between
salts ions and chemical, biological, and
geological parameters and their
consequences for nature, society, and
the environment. The increase in ionic
concentrations derives from pollution,
human-accelerated weathering, and/or
saltwater intrusion.
Metapopulation and
metacommunity: a set of local
populations or communities linked
by dispersal of multiple potentially
interacting individuals or species.
Oligohaline systems: systems within
freshwater range that have lowest
salinity, mostly in terms of chloride
concentrations, as, for example, high
mountain snowmelt-fed streams or
rivers. General classification of saline
waters is not homogenous between
inland, estuarine, or marine ecosystems.
Based on [141], freshwater would be
between 0.02 and 1.0 g/l.
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biodiversity and ecosystem services [42], are one of the most abundant freshwater habitats in
the world [43], and are particularly sensitive to drought or water abstraction and, therefore,
salinisation [4,44].

Composition and relative ion concentrations
Salinisation effects depend on ion composition and concentrations, both in terms of background
salinity and the ‘chemical cocktails’ of ions created by anthropogenic activities [14,45]. The
combination of different ions (e.g., Na+, K+, Cl–, CO3

2–, SO4
2–) and the mobilisation of other ele-

ments or ions (e.g., Cu, Mn, Zn, Sr, NH4+, PO4
3–) can lead to extremely different and complex

habitat-specific consequences [10,14,46]. The interrelationships between these consequences
and the chemical, biological, and geological properties of an environment are termed the
freshwater salinisation syndrome [10,14]. Also, FS needs to be considered in terms of relative
442 Trends in Ecology & Evolution, May 2022, Vol. 37, No. 5
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Regime shifts: the change of the state
of some ecosystems that, for certain
environmental conditions, have different
alternative stable states, separated by
an unstable equilibrium that marks the
border between the ‘basins of attraction’
of the states. A change in the external
conditions (e.g., increase in salinity) can
generate these shifts from one state
(e.g., clear waters dominated by
macrophytes) to a different one
(e.g., turbid waters dominated by
phytoplankton).
Small water bodies: those small lentic
water bodies that have received less
attention either due to their small size
(less than 10 ha) or their shallow depth,
despite their unique value. Also, systems
that periodically dry out (e.g., lotic or
lentic) are included in this category.
Water scarcity: understood here as the
decrease in water availability related to
direct withdrawal, excessive use, and
changes in rainfall and evapotranspiration
induced as a consequence of global
change.
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Figure 2. Global representation of studies on salinisation from 2017 to 2021 considering the causes of salinity
changes in the studied systems (bar plot colours), including mining, road de-icing, salt intrusion, and oil
extraction (e.g., fracking). Studies that did not specify the drivers of salinisation are included in the category ‘unknown
driver’ and those targeting systems with already high salinities due to natural causes (e.g., primary salinisation or saline inland
waters) are included in the category ‘natural salinity’. Circle size and white numbers correspond to the total number of studies
conducted on each continent. See database in Table S2 in the supplemental information online.
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changes in salt concentrations. For example, a small change in salinity can severely impact the
aquatic communities of natural oligohaline systems (e.g., high mountain streams) as these
have evolved under stable and low ion concentrations [34,36]. However, to date FS research
has mainly focused on sodium and chloride [9] while increases of ion concentrations relative to
natural conditions have been mostly ignored [47]. This limits our ability to capture the real conse-
quences of FS. For example, aquatic animals that inhabit calcareous catchments could be less
sensitive to salinisation due to an ameliorating effect of carbonates, which are also increasing in
freshwaters [48,49], on chloride toxicity. This phenomenon has been related to the rise in Ca con-
centration in body fluids, which reducesmembrane permeability, decreasing the passive diffusion
of chloride [50–52]. Also, background salinity concentrations can lead to adaptation, resulting in
intraspecific differences in the salt sensitivity of aquatic organisms [53,54].

Regional and landscape scales
Although salinity is known as a major driver of regional community structure and spatial beta di-
versity [55,56], the consequences that FS can have at large spatial scales are still to be under-
stood. Land use alterations (e.g., urbanisation, agriculture [49]) can change regional processes
such as dispersal and impact regional species pools. However, FS has rarely been studied
from ametapopulation and metacommunity perspective [57,58]. FS alters habitat suitability,
which translates to altered connectivity between inhabitable patches. In addition, it modifies
dispersal and trait selection in water bodies, with consequences for less tolerant keystone
Trends in Ecology & Evolution, May 2022, Vol. 37, No. 5 443
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species and for the regional pool [59–61]. Thus, it is reasonable to assume that metacommunity
dynamics can be significantly affected by FS.

Ecosystem level processes
Responses at species level have received much attention [16,62,63] and often been used to set
policy recommendations (e.g., [27,64]), which therefore fail to capture complex interactions
(e.g., FS can affect the grazing potential of zooplankton because of changes in the dominance
of different groups [65]). However, ecosystem-level responses, including ecosystem functions
and services, have been rarely assessed [4,24] (Box S1 in the supplemental information online).
Organic matter decomposition is the most studied ecosystem function [66], for which interactive
effects of salinization with warming and drought have also been explored, implying an additive de-
crease in decomposition [67,68]. Less is known about salinity effects on biogeochemical cycles,
such as nitrogen processing [69] or the carbon cycle [4]. Although the effects of FS on most
physico-chemical processes that are relevant at the ecosystem level remain unknown, recent
studies have shown alterations in lake stratification [70,71] and changes in greenhouse gas
(GHG) production (e.g., methane) [72]. Finally, in spite of the documentation of salinity-induced
regime shifts in shallow lakes [73,74], explicit tests of the potential of FS to drive shifts and
the thresholds between alternative stable states (e.g., macrophyte-dominated clear waters and
phytoplankton-dominated turbid waters) are missing. This gap of knowledge on the functional
consequences of FS hinders the development of valid eco-hydrological models to predict
the impact of FS under different future scenarios. Overall, a more holistic perspective regarding
the impacts of salinisation is strongly needed, not only at the ecosystem functioning
(e.g., induced rise in GHG emissions, increased nitrogen loads) but also at the ecosystem ser-
vices level [9].

Community level
FS impacts at community level have been intensively studied. However, the current literature
mainly addresses community structure (e.g., species richness or composition [25,75,76]). Func-
tional aspects related to trait diversity, food web structure, and trophic dynamics remain poorly
explored. Some studies have reported significant declines of functional diversity of river and
stream invertebrates due to FS [77,78], but specific information on which traits could be affected
by FS and how this can impact ecosystem functioning is still scarce [79,80]. Also, few studies
have quantified the effects of FS on food webs (e.g., isotopic analyses [40,79], trophic structure
[74,81,82]).

Taxonomic groups
Recent studies have mostly focused on aquatic invertebrates [83,84], (63 on macroinvertebrates
and 46 on zooplankton; Figure 3). Despite their key role for ecosystem functioning (e.g., nutrient
cycling), microorganisms have received less attention (30; Figure 3). The same holds true for
higher trophic levels such as birds (1), fish (16), amphibians (18), and reptiles (2 studies;
Figure 3) [85–87]. The narrow focus on certain taxonomic groups prevents a proper assessment
of the risks that FS poses to global biodiversity.

Genetic and molecular levels
Few studies have investigated the role of adaptations (e.g., phenotypic, genetic, or epigenetic
adaptation [88]) to salt stress. The same is true for the interplay between ecological and evolution-
ary processes (i.e., eco-evolutionary dynamics [89]) in the context of FS. For example, the
effects on performance of species within the community (e.g., predation efficiency, stressor cross-
tolerance) are still not fully elucidated. Salinity is a strong evolutionary pressure [90–92], but short-
or mid-term adaptations can result in a cost for species fitness [84]. These adaptive costs add
444 Trends in Ecology & Evolution, May 2022, Vol. 37, No. 5
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Figure 3. Number of salinisation studies with focus on specific organisms during 2017–2021. Organisms are
divided into major groups defined by the focus of each study and they do not always respond to a taxonomic
classification (e.g., zooplankton includes Rotifera, Cladocera, and Copepoda, while microorganisms similarly include a num-
ber of unicellular taxa, including phytoplankton and bacterial communities in general). Note that an individual study may con-
tribute to several groups. Grey lines are illustrative of the possible trophic connections among the different groups. Organism
silhouettes were freely downloaded from IAN Image Library. See database in Table S2 in the supplemental information online.
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pressure to aquatic communities exposed to salinisation, potentially leading to loss of genetic diver-
sity [93]. Such information is of key importance to effectively manage salinised ecosystems to
ensure mitigation strategies success (e.g., loss of genetic diversity compromising recov-
ery [94,95]).

A research agenda
To facilitate and stimulate future research on FS, we present a research agenda that includes the
most urgent knowledge gaps to be addressed (Figure 1 and Table 1). The proposed agenda
spans across perspectives.
Trends in Ecology & Evolution, May 2022, Vol. 37, No. 5 445
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Table 1. Main agenda priorities (three for each category) for salinisation research to target main gaps and
biases, summarising themain discussed ideas of the current manuscript fromglobal, regional, local, temporal,
multiscale, and multidisciplinary perspectivesa

Global

Main focus on:
1. Collecting information from less studied regions (e.g., differences between biogeographic regions, different responses due to

climatic properties).
2. Creation of databases with salinity and biological data (e.g., use water quality and biomonitoring data that usually include salinity

measured as electrical conductivity).
3. Analyse freshwater salinisation causes, consequences, and dynamics at large spatial scales (e.g., continental, freshwater

salinisation increase in more drought-prone regions).

Some suggested approaches:
➢ Gathering salinisation and biological information and building region-wide databases and research networks.

Establishing a common methodological framework to generate harmonised data in the future (e.g., report salinity in
the same units).

➢ Developing wide-scale approximations to assess extent of salinity consequences (e.g., contribution to greenhouse gas
emission of salinised freshwaters).

➢ Partnership at international-level projects with countries understudied that often have small research budgets.

Regional

Main focus on:
1. Community salinity thresholds (i.e., salinity ranges at which there is a drastic change in species composition).
2. Environmental tracking and impact of freshwater salinisation on colonisation–extinction dynamics (e.g., metacommunities) and

regional biodiversity.
3. Basin level characteristics (e.g., geology) favouring or buffering freshwater salinisation and modulating its impacts on

biodiversity and ecosystems. Basin-wide consideration of salinity dynamics (e.g., upstream–downstream processes).

Some suggested approaches:
➢ Quantification of land uses (e.g., impervious surfaces, crops) using satellite imagery and geographic information

systems.
➢ Coordinated experiments across regions with different land uses and climatic conditions (e.g., GLEON salinity experiments,

among others).
➢ Large-scale mesocosms experimentsb for determining salinity thresholds for species extinction and colonisations.

Local

Main focus on:
1. Impact of freshwater salinisation on the less-studied trophic levels (e.g., primary producers, microbial loop,

plankton, higher trophic levels) and cascading effects on ecosystem functioning (e.g., bottom-up control,
top-down control).

2. Species traits related to salinity tolerance with implications for ecosystem functions.
3. Adaptation to salinisation and consequences for eco-evolutionary dynamics (e.g., species adaptations increase population

fitness with an effect on ecosystem functions).

Some suggested approaches:
➢ eDNA, genomic composition of total (DNA) and active (RNA) diversity, (Meta)genomics, (Meta)transcriptomics.b

➢ Compound-specific stable isotopes or energetic and metabolic perspectives.
➢ Larger experimental infrastructures (allowing for replicability and for including multiple trophic levels).b

Temporal

Main focus on:
1. Long-term datasets or long-term trends analysis (e.g., new experiments or previous databases).
2. High-frequency data, including relevant metrics (e.g., salinity, temperature, water flow).
3. Regional adaptations of the species pool to background salinities (e.g., genetic/phenotypic adaptations from different

populations/communities between impacted or nonimpacted regions).

Some suggested approaches:
➢ Paleolimnological data to understand the effect of past salinisation events and capture long-term changes linked to human

activities (e.g., road-salt usage, industrialisation).
➢ Combined analysis of time-series data and experimentation (i.e., short-term trajectories).
➢ High-frequency automated monitoring of small-scale ecological responses to salinity changes.

Multiscale and multidisciplinary perspectives and disciplines

Main focus on:
1. Chemical cocktails (e.g., metal ions, salt ions, nutrients), their relationship with geomorphological processes, and their impact on

trophic processes and trophic structure.
2. Multiple stressors’ effects on community structure and function within the context of freshwater salinisation.
3. Effects of salinization on ecosystem services and/or nature contributions to people and human health risks.

Trends in Ecology & Evolution
OPEN ACCESS

446 Trends in Ecology & Evolution, May 2022, Vol. 37, No. 5

CellPress logo


Some suggested approaches:
➢ Building networks and joint meetings across different disciplines.
➢ Interdisciplinary projects combining ecological, social, health, and economic perspectives (e.g., economic, health, or social

assessment of freshwater salinization impacts for human societies based on its ecological impacts).
➢ Citizen science as a tool to engage multiple stakeholders.

aEach perspective is an approximate ‘level’ at which the processes and methods could be analysed and not a restrictive
separation.
bSuggested approaches that could be actually applied to several levels. Find the complete agenda in Table S1 in the
supplemental information online.
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Local perspective
More information on primary producers (e.g., phytobenthos or phytoplankton) is clearly needed,
especially as they constitute a key component in aquatic systems . A simultaneous consideration
of multiple trophic levels is also of key importance to better understand how top-down and
bottom-up processes change as a response to FS. Changes in salinity are generally accompanied
by changes in the trophic state of ecosystems, with possible implications for primary producers [96].
These changes are to some extent triggered by top-down control due to the loss of consumers
(e.g., zooplankton, fish [97,98]), which may foster phytoplankton blooms, although it is still unclear
how strong this top-down control might be at varying salinity levels [17,99]. Salinisation can also
alter bottom-up control. For example, mobilisation of base cations, changes in pH, and the alteration
of biogeochemical processes can increase the mobilisation of nutrients (e.g., dissolved inorganic ni-
trogen and soluble reactive phosphorus [96]). The interaction between increased salinity and other
nutrients can trigger compositional changes in primary producers [100] with consequences at higher
trophic levels [65,101]. Field tests and ecosystem level manipulations may benefit the understanding
of such processes [102].

The highest trophic levels constitute another key component to focus on the local perspective.
Existing knowledge on toxicological and individual responses of fish, amphibians, and birds
[17,86,103] must be applied to assess salinity-triggered changes in their trophic interactions
(e.g., changes in predation rates). At community level, top-down effects (e.g., loss of keystone spe-
cies due to salinisation [104]) and trophic cascades are receiving increasing attention [79,105].
However, a complete understanding of these interactions as well as more trophic or energetic
approaches (e.g., energy fluxes across the food web [40,79]) needs further attention. Similarly, be-
havioural responses (e.g., boldness, cerebral lateralisation) to FS need to be assessed [106,107].
Finally, FS has been shown to alter host–parasite interactions but the information is limited to a
few studies and should be further investigated [108]. The trophic consequences of FS on natural
systems are complex to assess, but use of mesocosm experiments can help to assess them
[97,109]. In addition, use of compound-specific stable isotopes or energetic perspectives
(e.g., fatty acids analysis [110]) can help us to understand the response of trophic food webs to
FS under experimental and field conditions.

For the lowest trophic levels (e.g., bacteria, fungi), changes in their communities either in the species
composition and/or their activity induced by FS can modulate ecosystem functions and drive pro-
cesses related to GHG production. Denitrification [69,111], methane production [112], but also dis-
solved organic carbon, detrital processing, and decomposition [39,68] are key aspects linked to
microbial activity that need further attention. Molecular methods used to assess microbial diversity,
linking it with functionality, can help to analyse these processes [76]. The few available studies on
FS consequences for microorganisms have focused on community composition [113]. Although
assessing microbial diversity or composition is relevant, its functional activity is key at the ecosystem
level [69]. Therefore, the link between composition and activity should be further explored by analysing
genomic composition of total (DNA) and active (RNA) diversity, which can help to identify the more
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active processes and the taxonomic groups involved in them (e.g., comparison of DNA- and RNA-
based sequencing, marker genes such 16S or 18S rRNA, metagenomics and metatranscriptomics).

As shown for other stressors [114], trait-based approaches can be useful tools to obtain a more
mechanistic understanding of how FS impacts the structure and function of freshwater communities
[75] since they focus on the functional roles of species within the ecosystem rather than their identities
(e.g., litter decomposition [39]). Traits associatedwith tolerating osmotic stress, such as short lifespan,
high number of generations per year, dormancy, plastron respiration, or ovoviviparity, might be
beneficial for coping with FS (see traits listed in [59,115]). Furthermore, body size and mobility should
also be considered, especially when assessing dispersal dynamics or connectivity [57,59].

Regional perspective
Many of the drivers and processes that modulate FS have an effect at the catchment or water-
shed scales [10,14,49] or even at larger spatial scales [33,116]. Accordingly, landscapes under-
going salinisation can have very large spatial extents (e.g., the Murray-Darling Basin, the Aral Sea
Basin, or the Konya Closed Basin), with changes in the regional species pools. This can modify
colonisation–extinction dynamics and/or favour the spread of salt tolerant, generalist species or
invasive species [61,117]. Habitat connectivity plays a key role in environmental tracking
(i.e., adaptation to environmental change at the community level) and therefore in either buffering
(e.g., population maintenance due to mass effect) or favouring community differentiation
(e.g., change in species pool) [57–59]. At the same time, connectivity may also contribute to
negative impacts of FS by propagating it from a main source (e.g., basin-wide effects [118])
and this must therefore be considered since changes in the upstream chemical composition
can be exported across a whole river catchment [119,120].

Salinity gradients linked to the natural features of the landscape (e.g., geology, natural drought, land
uses) can drive evolutionary adaptations [38,121]. Consequently, background salinity (i.e., salinity
levels at which communities have evolved) is relevant when addressing responses to human-
driven salinization. Shifting background salinity in naturally oligohaline systems represents a
major threat, especially in naturally oligohaline systems (e.g., road de-icers in mountain regions
[36,38]), inducing biodiversity loss and an alteration of biogeochemical interactions, species
pools, and ecosystem functioning [10,17]. Quantification of regional-scale features accounting
for both human and natural salinity drivers (e.g., land use, geology, climate, hydrology) seems
essential at this level. Besides, there is a clear need for proof-of-principle experiments accounting
for regional-scale processes (e.g., mesocosms with gradients of salinity and connectivity coupled
with different regional species pools).

Global perspective
More complete global databases [5,49], also including biological datasets, could provide a better
overview of the salt concentrations at which aquatic communities undergo significant changes
(e.g., thresholds representing sharp decreases in species richness [122]). Many limnological
studies and monitoring programmes not focusing on FS do, however, include electrical conduc-
tivity and biological data. Gathering such information (covering both temporal and spatial scales)
and building region-wide databases (see some examples [49,116]) are a priority for gaining a
global perspective on FS and enabling forecasting of its impacts at a planetary scale. Further-
more, knowledge on how FS affects physico-chemical and ecosystem processes would help
to improve and develop ecohydrological models (fed with remote sensing or high-frequency
monitoring data). Although related to a more local perspective, such information might be
upscaled and used to assess the consequences of salinity changes at larger spatial and temporal
scales (e.g., continental, future scenarios). For example, salinity could be assessed via satellite
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or drone, which can be used to apply already developed salinity indices or together with other
proxies (e.g., hydrology, land use, impervious surface [123]), which later could be related to eco-
system metrics (e.g., nutrients, carbon decomposition) or biogeochemical processes (e.g., GHG
production, pH). This would help to quantify the extent of salinity as well as its contribution to GHG
emissions and to predict future scenarios [2]. Although they sound promising, such approxima-
tions still need to be developed. Similarly, data gathering based on citizen science projects,
where salinity levels can be obtained by general public participation and reported remotely,
remains to be explored but might be valuable to build extensive databases as seen in
other disciplines [124,125]. Assessing the extent of FS is central for setting a global management
and policy agenda, as has been done for climate change [2].

One of themost important steps for advancing our knowledge on FS is to focus on vulnerable and
less-studied regions. There are many regions of the world where severe salinisation of water
bodies is likely to occur, but it is hard to prove it due to lack of data (e.g., India [126]). Besides,
assessing and monitoring human activities in understudied regions could also be beneficial
to feed global databases. This can be attained by promoting international-level projects that
will foster salinity research in countries with small research budgets. In this regard, affordable
methods, which can be obtained worldwide and centralised to decrease total costs
(e.g., satellite-based assessment, eDNA, gene expression quantification), must be developed
as well as partnerships with bigger institutions having bigger infrastructure to decrease sample-
processing costs.

Temporal perspective
To address the existing knowledge gaps related to the temporal dynamics, long-term datasets re-
lated to salinisation impacts are essential for understanding the long-term consequences of FS
[127]. Accounting for time is also highly relevant from an adaptive and evolutionary point of view
[91]. Here, adaptation of selected species to long-lasting FS impacts may be central for posterior
remediation and for comprehending the eco-evolutionary dynamics of salinity changes [61,128].
Generalist and salinity-tolerant species benefit from the release on competition and predation pres-
sures of saline systems [80,129], as reported in, for example, potash mining-impacted streams
[119]. Evolution linked to such processes has traditionally been related to geological time scales
[91,121]. However, there is accumulating evidence on rapid evolution, now considered an impor-
tant response of species to environmental change [130,131]. Thus, eco-evolutionary dynamics
[132] are likely to be a main driver of community assembly in salinised habitats. However, as
human-mediated salinisation may differ from natural salinisation at the chemical level [14], it may
also require different evolutionarymechanisms. The lack of long-term datasets should not preclude
anticipating the long-term consequences of salinisation. Alternative approaches using combined
analysis of time-series data, paleolimnology [133], and experimentation (i.e., short-term trajectories)
could help to elucidate such trends [134]. Furthermore, high-frequency monitoring can aid in cap-
turing small-scale ecological responses to FS that are otherwise missed in standard monitoring
programmes [134]. High-frequency real-time monitoring can be used to derive ecosystemmetab-
olism [135] or to provide early warning signals for harmful cyanobacterial blooms [136]. However,
such methodologies still need to be implemented in FS studies.

Multiscale and multidisciplinary perspectives
More interdisciplinary research should be conducted to obtain, for example, a complete picture
of how agriculture modifies the salinity of freshwater ecosystems, its consequences, and how
these can be managed; such a picture can only emerge from interaction among experts
(e.g., edaphologists, hydrologists, ecotoxicologists, farmers, policy makers, among others).
Building networks across different disciplines would represent a step forward in the development
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Outstanding questions
How can we promote research in less-
studied regions and build global net-
works optimising research costs and
methodologies? Developing and pro-
moting cheaper, affordable methods
is needed.

How does salinisation interact with
other global change drivers such as
warming, habitat destruction, or
invasive species? Are the effects of
these negative drivers interactive or
additive?

Could the currently available databases,
where biological information as well
as electrical conductivity are often
reported, be used to build wider-scale
databases or long-term datasets? Data
collection is still needed from many
regions of the world. Citizen science pro-
jects may be key to complement such
databases.

How are landscape-scale alterations
reflected in the composition and func-
tioning of local habitats? How far can
salinisation impacts be transmitted
across connected systems? Identifica-
tion and quantification of the main
regional drivers of salinisation are nec-
essary to reveal mechanisms beyond
regional community patterns.

Can remote sensing be used to predict
freshwater salinisation at local and
regional scales? Could this be
implemented to identify and monitor
unknown impacted sites? Such tools
still need to be tested and properly
developed.

How are ecosystem-level processes
affected by freshwater salinisation?
Can this lead to shifts in alternative sta-
ble states? Do compositional changes
affect community functioning? Consid-
eration of microbial activity and gene
expression can help to assess
changes in ecosystem-level processes
and which functions might be more
sensitive.

How does salinisation of freshwaters
modulate food web structure and
functioning? How are energetic
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of conceptual models, global monitoring, and data analysis and for a successful management of
FS. Considering simultaneously ecological, economic (e.g., infrastructure damaging, economic
costs), social (e.g., water potability), and political (e.g., regulations or thresholds) facets is espe-
cially relevant to generate anticipation, mitigation, and remediation strategies. In the same line,
studies on interrelated impacts at chemical, geological, and biological levels must be also pur-
sued [10,14,49]. Implementing a combination of techniques and perspectives in both experimen-
tal facilities and later in the field can contribute to a better understanding of more complex
relationships [137–139].

Concluding remarks: a saltier world
Salinisation is one of the greatest threats to global freshwater ecosystems and their associated
biodiversity, as well as to societal well-being, as it is expected to impact the quality and provision-
ing of water and related ecosystem services across the globe. This challenge needs to be ad-
dressed by a joint and focused effort from the scientific community working at different scales,
involving also stakeholders and local practitioners. The implications of salinisation at the ecolog-
ical and evolutionary levels for freshwater ecosystems will change their biodiversity and function-
ing and, thereby, affect human societies relying on them at both economic and health levels.
Here, we have conceptualised a research agenda outlining the way forward (Table 1 and see
Outstanding questions). Research focused on filling knowledge gaps would contribute to signif-
icantly advancing and concomitantly developing better management strategies (e.g., nature-
based solutions) as well as to raising the general awareness of the problem [1,140].
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