Anlage 32 Fachspezifische Anlage für das Fach Engineering Physics (Fach-Bachelor)

vom 22.09.2016

- Lesefassung -

1. Hochschulgrad

Nach bestandener Bachelor-Prüfung im internationalen Studiengang Engineering Physics verleihen die Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg und der Fachbereich Technik der Hochschule Emden/Leer den Hochschulgrad "Bachelor of Engineering (B. Eng.)".

2. Ziele des Studiums

- a) Der internationale Bachelor-Studiengang in Engineering Physics ist anwendungsorientiert und zielt auf die Vermittlung allgemeiner mathematisch-physikalischer Kenntnisse sowie *auf* eine fundierte Grundausbildung in den Ingenieurwissenschaften im breiten fachlichen Umfang. Aufbauend auf einer soliden Ausbildung in den relevanten Methoden der Mathematik werden der Grundkanon der Experimentalphysik und Auszüge der theoretischen Physik behandelt. Das naturwissenschaftlichtechnische Grundlagenwissen wird in den höheren Semestern vertieft und mit einer nicht zu engen Spezialisierung in den Bereichen Biomedical Physics & Acoustics, Laser & Optics und Renewable Energies erweitert. Die praktischen Fertigkeiten werden in Laborpraktika zunehmender Schwierigkeit entwickelt, wobei gleichzeitig in den Laborprojekten in höheren Semestern Schlüsselkompetenzen wie Teamfähigkeit, Kommunikations- und Präsentationsfähigkeiten gefördert werden. Die Entwicklung von Fähigkeiten und deren effektive Nutzung in einer Praxisphase sind in die Ausbildungsinhalte integriert, ebenso wie die Aneignung zentraler Methoden zur selbständigen wissenschaftlichen Weiterbildung.
- b) Der Bachelor-Abschluss ermöglicht einen frühen Einstieg ins Berufsleben mit typischen Berufsfeldern in der Produktionsüberwachung, der physikalischen Messwerterfassung, sowie bei Organisations- und Prüfungsaufgaben in Forschungsinstituten, Industrie, Kliniken und staatlicher Verwaltung.
- c) Ein qualifizierter Bachelor-Abschluss befähigt zur Aufnahme eines zweijährigen Master-Studiums in Engineering Physics oder verwandter Studiengänge.

3. Allgemeine Hinweise zum Studium

Die Zulassung zur Modulprüfung kann die regelmäßige, aktive und dokumentierte Teilnahme an praxisorientierten Lehrveranstaltungen (Praktika, Übungen, Seminare) voraussetzen (§ 9 Abs. 4 BPO). Für Leistungen, die in solchen Lehrveranstaltungen erbracht werden, können Bonuspunkte vergeben und in die Modulbenotung einbezogen werden (§11 Abs. 4 BPO). Dabei muss gewährleistet sein, dass auch ohne Bonussystem die Note 1,0 erreicht werden kann. Näheres regeln die Modulbeschreibungen. Im Konfliktfall ist eine Ombudsperson einzubeziehen.

4. Gliederung des Studiums

Das Studium gliedert sich in

- ein Kerncurriculum, das 120 Kreditpunkte umfasst, von denen 33 Kreditpunkte als Basismodule ausgewiesen sind,
- einen Professionalisierungsbereich im Umfang von 45 Kreditpunkten, davon 15 Kreditpunkte als Praxismodul und
- das Bachelorarbeitsmodul im Umfang von 15 Kreditpunkten.

5. Regelungen zu den Prüfungsleistungen

- a) Art und Umfang der Prüfungsleistungen müssen im Verhältnis zu der zu vergebenen Kreditpunktzahl stehen. In der Regel sollen bei Modulprüfungen im Umfang von sechs Kreditpunkten Klausuren nichtlänger als drei Stunden und mündliche Prüfungen nicht länger als 30 Minuten dauern.
- b) Die Prüfungen können in deutscher oder englischer Sprache abgehalten werden. Weitere Sprachen können auf Antrag zugelassen werden, wenn Prüfling und Prüfende oder Prüfender zustimmen.
- c) Die Wiederholung einer bestandenen Prüfung zur Notenverbesserung (Freiversuch gemäß § 15 Abs. 5 BPO) ist nicht möglich, wenn es sich bei der Prüfungsleistung um fachpraktische Übungen handelt.

6. Form und Inhalte der Module in Engineering Physics

Basiscurriculum (33 KP), Pflichtmodule

Modulbezeichnung	Lehrveran- staltungen	Kredit- punkte	Prüfungsleistungen
phy540 Mathematical Methods for Physics and Engineering I	1 VL, 1 Ü	9	1 Klausur (max. 180 Min.) oder 1 mündliche Prüfung (max. 45 Min.)
phy509 Mechanics	1 VL, 1 Ü	6	1 Klausur (max. 180 Min.) oder 1 mündliche Prüfung (max. 45 Min.)
phy513 Basic Laboratory	2 Praktika	9	2 fachpraktische Übungen (WiSe: 13 Protokolle, 1 Vortrag; Gewichtung 5/9); (SoSe: 11 Protokolle, 1 Vortrag; Gewichtung 4/9)
phy520 Electrodynamics and Optics	2 VL, 1Ü	9	1 Klausur (max. 180 Min.) oder 1 mündliche Prüfung (max. 45 Min.)
Gesamt		33	

Abkürzungen: Vorlesung (VL); Übung (Ü)

Aufbaucurriculum (87 KP), Pflichtmodule

Modulbezeichnung	Lehrveran-	Kredit-	Prüfungsleistungen
	staltungen	punkte	
phy555 Basic Engineering	2 VL	6	1 Klausur (max. 180 Min.) oder 1
			mündliche Prüfung (max. 45 Min.)
phy563 Specialization	2 VL	6	1 Klausur (max. 180 Min.) oder 1
			mündliche Prüfung (max. 45 Min.)
phy541	1 VL, 1Ü	6	1 Klausur (max. 180 Min.) oder
Mathematical Methods for			1 mündliche Prüfung (max. 45 Min.)
Physics and			
Engineering II			
phy570	2 VL	6	1 Klausur (max. 120 Min.)
Electronics			, , , , , , , , , , , , , , , , , , ,
phy542	1 VL, 1Ü	6	1 Klausur (max. 180 Min.) oder
Mathematical Methods for			1 mündliche Prüfung (max. 45 Min.)
Physics and Engineering III			
phy031	1 VL, 1Ü	6	1 mündliche Prüfung (max. 45 Min.)
Atomic and Molecular Physics	,		,
phy551	1 VL	6	1 Klausur (max. 180 Min.) oder 1
Quantum Structure of Matter			mündliche Prüfung (max. 45 Min.)
phy505	1 VL, Praktikum	9	Fachpraktische Übung
Lab Project I			
phy150	1 VL, 1Ü	6	Fachpraktische Übung
Numerische Methoden der			
Physik			
phy041	1 VL, 1 Ü	6	1 Klausur (max. 180 Min.) oder
Thermodynamik und Statistik			1 mündliche Prüfung (max. 45 Min.)
			,
phy530	1 VL/Ü + 1 SE	6	VL:1 Klausur (max. 180 Min.) oder
Physikalische Messtechnik			1 mündliche Prüfung (max. 45
			Min.) (Gewichtung ½) SE: 1
			Referat oder 1 Hausarbeit
			(Gewichtung ½)
phy581 Werkstoffkunde	1VL, 1Ü	6	1 Klausur (max. 180 Min.) oder
			1 mündliche Prüfung (max. 45 Min.)
phy590	1 VL, 1Ü	6	1 Klausur (max. 180 Min.) oder
Regelungstechnik			1 mündliche Prüfung (max. 45 Min.)
phy050 Experimentalphysik V:	1 VL, 1 Ü	6	1 Klausur (max. 180 Min.) oder 1
Festkörperphysik	·		mündliche Prüfung (max. 45 Min.)
Gesamt		87	

7. Professionalisierungsbereich

- (1) Der Professionalisierungsbereich ist untergliedert in
 - ein Praxismodul im Umfang von 15 Kreditpunkten gem. Nr. 8,
 - weitere Module im Umfang von 30 Kreditpunkten gem. Nr. 7 Abs. (2).
- 2) Die Module des Professionalisierungsbereichs können aus dem Lehrangebot des Instituts für Physik und dem überfachlichen Professionalisierungsbereich der Universität Oldenburg und des Fachbereichs Technik der Hochschule Emden/Leer frei gewählt werden. Folgende Veranstaltungen werden dringend empfohlen:
 - Fachbezogene Angebote des Professionalisierungsbereiches im Umfang von mindestens zwölf Kreditpunkten. Diese Module können zur Einarbeitung in das Spezialgebiet, in dem die Bachelor-Arbeit geschrieben werden soll, zum Erlernen der nötigen Sprachkenntnisse oder zur Vertiefung praktischer Kenntnisse im Hinblick auf ein anschließendes Master-Studium und zur Abrundung der Kenntnisse genutzt werden. Dabei ist die Belegung mindestens einer Spezialisierung im Umfang von sechs Kreditpunkten erforderlich, da hierin die fachlichen Grundlagen für das Bachelorarbeitsmodul vermittelt werden.

 Des Weiteren können Module zur Vertiefung praktischer Fähigkeiten sowie zur Vermittlung der nötigen Sprachkompetenz für die Module höherer Semester belegt werden. Letztere werden dringend für Studierende mit nicht ausreichenden Sprachkenntnissen empfohlen.

8. Das Praxismodul

Die Studierenden müssen während des Studiums ein zweimonatiges Industriepraktikum in einem Unternehmen oder einer Forschungseinrichtung im Umfang von 15 Kreditpunkten absolvieren. Das Industriepraktikum wird in der Regel nach Vorlesungsende des 5. Semesters durchgeführt. Die Universität Oldenburg und die Hochschule Emden/Leer unterstützen die Studierenden bei der Vermittlung von Praktikumsplätzen durch die zuständigen Einrichtungen. Zur Betreuung des Industriepraktikums müssen die Studierenden eine prüfungsberechtige Lehrende / einen prüfungsberechtigten Lehrenden auswählen.

Modulbezeichnung	Lehrveranstaltungen	Kredit- punkte	Prüfungsleistungen
prx108 Berufsfeldbezogenes Praktikum	1 PR, 1 Postersession	15	1 Portfolio (Protokoll und Kurzreferat)

9. Auslandssemester

Studierenden insbesondere aus Deutschland aber auch ausländischen Studierenden wird ein Auslandssemester empfohlen. Das Auslandssemester wird soweit möglich im Rahmen von Austauschprogrammen durchgeführt.

10. Prüfungsausschuss, Prüfungsamt

Der Gemeinsamen Kommission "Engineering Physics" wird durch die Fakultät V der Universität Oldenburg und den Fachbereich Technik der Hochschule Emden/Leer die Wahl eines Prüfungsausschusses gem. Prüfungsordnung übertragen. Dem Prüfungsausschuss gehören sechs stimmberechtigte Mitglieder an, und zwar zwei Mitglieder der Hochschullehrergruppe der Universität Oldenburg, zwei Mitglieder der Hochschullehrergruppe der Hochschule Emden/Leer, ein Mitglied der Mitarbeitergruppe, das in der Lehre tätig ist, sowie ein Mitglied der Studierendengruppe aus dem entsprechenden Studiengang.

11. Prüfende

Zur Abnahme von Prüfungen werden Mitglieder und Angehörige der Carl von Ossietzky Universität Oldenburg, der Hochschule Emden/Leer oder einer anderen Hochschule bestellt, die in dem betreffenden Prüfungsfach oder in einem Teilgebiet des Prüfungsfaches zur selbständigen Lehre berechtigt sind.

12. Bachelorarbeit

Das Bachelorabschlussmodul hat einen Umfang von 15 Kreditpunkten und enthält neben der Bachelorarbeit ein Abschlusskolloquium. Dabei entfallen 12 Kreditpunkte auf die Anfertigung der Bachelorarbeit und 3 Kreditpunkte auf das Abschlusskolloquium (Gewichtung 4/5 Bachelorarbeit; 1/5 Kolloquium). Das Thema der Bachelorarbeit kann von jedem Mitglied der Hochschullehrergruppe der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg und des Fachbereichs Technik der Hochschule Emden/Leer, das an der Lehre im Studiengang Engineering Physics beteiligt ist, festgelegt werden. Die Bachelorarbeit kann in deutscher oder in englischer Sprache abgefasst werden.