Stud.IP Uni Oldenburg
University of Oldenburg
18.09.2021 14:42:49
Lecture: 5.04.202b Struktur der Materie (für Zwei-Fächer-Bachelor) - Details
You are not logged into Stud.IP.

General information

Course name Lecture: 5.04.202b Struktur der Materie (für Zwei-Fächer-Bachelor)
Subtitle
Course number 5.04.202b
Semester Sommersemester 2021
Current number of participants 71
expected number of participants 50
Home institute Institute of Physics
Courses type Lecture in category Teaching
Next date Fri., 08.10.2021 14:00 - 17:00, Room: A11 1-101 (Hörsaal B)
Type/Form V
Pre-requisites Analysis I und IIa, Lineare Algebra, Experimentalphysik I bis III
Performance record Wöchentliche Übungen, 2-stündige Klausur oder mündliche Prüfung von maximal 45 min. Dauer. Informationen zur Berücksichtigung von Bonuspunkten bei der Modulbenotung finden Sie unter: http://www.uni-oldenburg.de/physik/studium/bonuspunkte
Lehrsprache deutsch
ECTS points 6

Course location / Course dates

(online) Tuesday: 12:00 - 14:00, weekly (14x)
Thursday: 12:00 - 14:00, weekly (13x)
A11 1-101 (Hörsaal B) Friday. 08.10.21 14:00 - 17:00

Fields of study

Comment/Description

Die Studierenden erlernen im ersten Teil die grundlegenden Prinzipien der phänomenologischen Thermodynamik einschließlich der Anwendungen auf dem Gebiet der Maschinen, sowie der mikroskopischen Thermodynamik und Statistik. Die Grundprinzipien werden auch anhand von Schlüsselexperimenten vermittelt, die auch in ihrer späteren Berufspraxis in der Schule eine Rolle spielen. Im zweiten Teil erwerben die Studierenden Kenntnisse über Phänomene der Festkörperphysik (Halbleiterphysik, Photovoltaik, Tieftemperaturphysik, Supraleitung). Sie erlangen Fertigkeiten zur Anwendung grundlegender Methoden und Prinzipien der Beschreibung von Festkörperphänomenen (Symmetrien, reziproker Raum, Modenspektren, Wechselwirkungen, starke und schwache Elektronenbindung, makroskopische Quantenphänomene, Beschreibung der Störung der periodischen Gitterstruktur). Sie bauen Kompetenzen zur Erfassung der Funktion von technisch relevanten Bauteilen als eine Grundlage der Vermittlung im Berufsfeld Schule. Außerdem erlangen sie Kompetenzen zur gesellschaftspolitischen Einordnung der Konsequenzen von physikalischer Forschung.

Teil 1: Thermodynamische Zustandsgrößen, Hauptsätze der Thermodynamik, ideale und reale Gase, irreversible Zustandsänderungen, Kreisprozesse, Aggregatzustände, offene Systeme und Phasenübergänge, Wärmeleitung und Diffusion, statistische Ansätze für Gleichverteilung im Volumen, Entropieänderungen, kinetische Gastheorie, Boltzmann-, Fermi-Dirac- und Bose-Einstein-Statistik, Maxwell Verteilung, Planckscher Strahler.

Teil 2: Kristallstrukturen und Symmetrien, Bravais-Gitter, Translationssymmetrie und reziprokes Gitter, Bindungsenergien und Bindungstypen (kovalente, ionische, van der Waals, metallische und Wasserstoffbrücken-Bindung), Dynamik der Kristallgitter, Phononen, spez. Wärme, Wärmeleitung und Umklapp-Prozesse, Elektronen in Festkörpern, quasifreies Elektronengas, Zustandsdichten und Ferminiveau, Elektronen im periodischen Potential, Blochtheorem, Bänderschema, Metalle/Isolatoren, „neue Materialien“