Stud.IP Uni Oldenburg
University of Oldenburg
17.05.2022 09:51:10
phy605 - Digital Signal Processing (Complete module description)
Original version English Download as PDF
Module label Digital Signal Processing
Module code phy605
Credit points 6.0 KP
Workload 180 h
Attendance: 56 hrs, Self study: 124 hrs
Institute directory Institute of Physics
Applicability of the module
  • Master's Programme Engineering Physics (Master) > Schwerpunkt: Acoustics
Responsible persons
Doclo, Simon (Module responsibility)
Doclo, Simon (Authorized examiners)
Skills to be acquired in this module
The students acquire knowledge about theoretical concepts and methods of signal processing and system theory for discrete-time signals and systems. The students are able to apply these theoretical concepts and methods in analytical, numerical and programming exercises.
Module contents
System properties (stability, linearity, time-invariance, causality); Discrete-time signal processing: sampling theorem, time-domain analysis (impulse response, convolution), z-transform, frequency-domain analysis (transfer function, discrete-time Fourier transform, discrete Fourier transform, FFT, STFT), digital filter design (FIR, IIR, linear phase filter, all-pass filter, signal flow graph), multi-rate signal processing (down/up-sampling, filter banks); Statistical signal processing: stationarity, ergodicity, correlation, Wiener-Khinchin theorem, spectral estimation; Adaptive filters: optimal filters, Wiener filter, time-domain algorithms (RLS, NLMS), frequency-domain algorithms (FDAF);Matlab exercises about discrete-time signal processing and adaptive filters.
Reader's advisory

A. V. Oppenheim, R. W. Schafer, “Discrete-Time Signal Processing”, Prentice Hall, 2013.

J. G. Proakis, D. G. Manolakis, “Digital Signal Processing – Principles, Algorithms and Applications”, Prentice Hall, 2013.

S. Haykin, ”Adaptive Filter Theory“, Pearson, 2013.

P. P. Vaidyanathan, ”Multirate systems and filter banks“, Prentice Hall, 1993.

K.-D. Kammeyer, K. Kroschel, ”Digitale Signalverarbeitung: Filterung und Spektralanalyse mit MATLAB Übungen“, Broschiert, 2018
Languages of instruction German, English
Duration (semesters) 1 Semester
Module frequency
Module capacity unlimited
Modullevel / module level MM (Mastermodul / Master module)
Modulart / typ of module Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method Lecture: 2hrs/week; Exersise: 2hrs/week
Vorkenntnisse / Previous knowledge Basic knowledge about continuous-time signals and systems and statistics. In addition, Matlab programming skills are required.
Examination Time of examination Type of examination
Final exam of module
Max. 180 min. Klausur oder 30 min. mündliche Prüfung
Course type Lecture
Frequency SuSe or WiSe
Workload attendance 56 h