Stud.IP Uni Oldenburg
University of Oldenburg
07.06.2023 20:55:21
mat960 - Mathematics of Computer Science (Analysis) (Complete module description)
Original version English PDF Download
Module label Mathematics of Computer Science (Analysis)
Modulkürzel mat960
Credit points 6.0 KP
Workload 180 h
Institute directory Department of Mathematics
Verwendbarkeit des Moduls
  • Bachelor's Programme Business Informatics (Bachelor) > Aufbaucurriculum-Wahlbereich Mathematik
  • Bachelor's Programme Computing Science (Bachelor) > Aufbaumodule
Zuständige Personen
Chernov, Alexey (Module responsibility)
Grieser, Daniel (Module responsibility)
Pankrashkin, Konstantin (Module responsibility)
Schöpfer, Frank (Module responsibility)
Shestakov, Ivan (Module responsibility)
Uecker, Hannes (Module responsibility)
Vertman, Boris (Module responsibility)
Skills to be acquired in this module
The students learn and apply basic notions and techniques of mathematical analysis.

Professional competence
The students:
· use rigorous mathematical proofs
· compute limit values and analyse the convergence behaviour of iterative methods
· apply differential and integral calculus to compute extreme values, to analyse the behaviour of functions and to develop numerical solution methods

Methodological competence
The students:
· analyse formal relations
· structure and justify solution methods

Social competence
The students:
· develop solutions to given problems in groups
· accept constructive criticism

Personal competence
The students:
· reflect their solution strategies
· deepen their understanding of the presented mathematical concepts with exercises and adopt the solution methods
Module contents
· Convergence of sequences, series and iterative methods
· Continuity, differential and integral calculus of functions of one variable
· Characterization and computation of extreme values
· Separable and linear ordinary differential equations
Peter Hartmann: Mathematik für Informatiker - ein praxisbezogenes Lehrbuch
Dirk Hachenberger: Mathematik für Informatiker
Otto Forster: Analysis I
Harro Heuser: Lehrbuch der Analysis, Teil 1
Konrad Königsberger: Analysis
Language of instruction German
Duration (semesters) 1 Semester
Module frequency every year
Module capacity unlimited
Modullevel / module level AC (Aufbaucurriculum / Composition)
Modulart / typ of module je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method
Vorkenntnisse / Previous knowledge
Form of instruction Comment SWS Frequency Workload of compulsory attendance
Lecture 3 SoSe 42
Exercises 1 SoSe 14
Präsenzzeit Modul insgesamt 56 h
Examination Prüfungszeiten Type of examination
Final exam of module
At the end of the lecture period written exam
Final exam of module