Stud.IP Uni Oldenburg
University of Oldenburg
22.09.2021 10:04:55
pre061 - Renewable Energy Complementary Topics (Course overview)
Institute of Physics 6 KP
Module components Semester courses Sommersemester 2021 Examination
Lecture
  • Unlimited access 2.01.511 - Smart Grid Management Show lecturers
    • Dr. Jörg Bremer
    • Prof. Dr. Sebastian Lehnhoff

    Tuesday: 18:00 - 20:00, weekly (from 27/04/21)
    Thursday: 16:00 - 18:00, weekly (from 22/04/21)
    Dates on Friday. 23.07.21 09:00 - 12:00, Tuesday. 27.07.21 13:00 - 16:00, Thursday. 29.07.21 11:00 - 14:00, Monday. 02.08.21 09:00 - ...(more)

    Beachten Sie bitte die Informationen der Veranstaltung im Stud.IP

  • Unlimited access 5.04.4063 - Introduction to Photovoltaics Show lecturers
    • Dr. Levent Gütay

    Tuesday: 08:00 - 12:00, weekly (from 13/04/21), V+Ü
    Dates on Friday. 13.08.21, Friday. 20.08.21 09:15 - 11:15, Monday. 23.08.21 10:30 - 12:30, Friday. 27.08.21 09:15 - 11:15, Monday. 30 ...(more)

    Auf Basis thermodynamischer und halbleiter/ festkörperphysikalischer Grundlagen sollen die Studierenden ein fundiertes Verständnis der photovoltaischen Energiewandlung sowie der elementaren Verlustprozesse in photovoltaischen Bauelementen erlangen und dabei ihre bisher erlangten Studienkenntnisse in den o.g. Disziplinen sicher anwenden. Aus diesem Wissen sollen die Studierenden wesentliche Randbedingungen zur Konzeption einer Solarzelle mit hohem Wirkungsgrad ableiten und qualitativ das Betriebsverhalten (Beleuchtungs- und Temperatureffekte) unter realen Bedingungen voraussagen können. Die Teilnehmer sollten darüber hinaus in der Lage sein, Anforderungen an die verwendeten Halbleitermaterialien (z.B. Dotierung, Tiefengradierung bestimmter Materialeigenschaften) und die internen Grenzflächen der Solarzelle physikalisch zu begründen. Neben grundlagenorientierten und materialwissenschaftlichen Kenntnissen zur Photovoltaik erwerben die Studierenden technisch geprägte Inhalte zum Funktionsprinzip und zur Konzeption von Photovoltaikmodulen sowie zur Systemtechnik photovoltaischer Anlagen. Inhalte: Festkörper- / halbleiterphysikalische Grundlagen, das solare Spektrum, Leistungsdichte, Absorption und Emission von Licht in Halbleitern, Generation und Rekombination, Gleichgewicht und Nichtgleichgewicht, Ladungstransport, Quasi-Fermi-Niveaus, Elektrostatik des pn-Übergangs, Majoritäten- und Minoritätenströme im pn-Übergang im Gleichgewicht und unter Beleuchtung, Sammeleffizienz, geometrische Auslegung des pn-Übergangs, Strom-Spannungs-Charakteristik, Halbleiter-Heterokontakte, pin-Strukturen, Strategien zur Optimierung der Solarzelleneffizienz, Technologieüberblick in der Photovoltaik

  • Unlimited access 5.04.4064 - Advanced Solar Energy Meteorology Show lecturers
    • Dr. Detlev Heinemann

    Tuesday: 14:00 - 16:00, weekly (from 13/04/21)

  • Unlimited access 5.04.4071 - Fluid Dynamics II / Fluiddynamik II Show lecturers
    • Prof. Dr. Joachim Peinke

    Wednesday: 08:00 - 10:00, weekly (from 14/04/21)

    Das zentrale Thema dieser Vorlesung sind turbulente Strömungen. Es werden Aspekte der numerischen Modellierung als auch der statistischen Charakterisierung behandelt (Reynolds-Gleichung, Schließungsproblem und Schließungsansätze, Turbulenzmodelle: Kaskadenmodelle - Stochastische Modelle) Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."

  • Unlimited access 5.04.4072 - Computational Fluid Dynamics I Show lecturers
    • Prof. Dr. Laura Lukassen

    Tuesday: 12:00 - 14:00, weekly (from 13/04/21)

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD I: The Navier-Stokes equations, introduction to numerical methods, finite- differences, finite-volume methods, linear equation systems, turbulent flows, incompressible flows, compressible flows, efficiency and accuracy

  • Unlimited access 5.04.4074 - Computational Fluid Dynamics II Show lecturers
    • Dr. Bernhard Stoevesandt

    Tuesday: 12:00 - 16:00, weekly (from 01/06/21)

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD II: RANS, URANS, LES, DNS, filtering / averaging of Navier- Stokes equations, Introduction to different CFD models, Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer. Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."

  • Unlimited access 5.04.4234 - Wind Physics Measurement Project Show lecturers
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Dr. Matthias Wächter, Dipl.-Phys.
    • Prof. Dr. Joachim Peinke
    • Dipl.-Ing. Andreas Hermann Schmidt

    Monday: 12:15 - 13:45, weekly (from 14/04/21)

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

  • Unlimited access 5.04.4235 - Design of Wind Energy Systems Show lecturers
    • Prof. Dr. Martin Kühn

    Tuesday: 16:00 - 18:00, weekly (from 13/04/21)
    Thursday: 12:00 - 14:00, weekly (from 15/04/21)

    The students attending the course will have the possibility to expand and sharpen of their knowledge about wind turbine design from the basic courses. The lectures include topics covering the whole spectrum from early design phase to the operation of a wind turbine. Students will learn in exercises how to calculate and evaluate design aspects of wind energy converters. At the end of the lecture, they should be able to: + estimate the site specific energy yield, + calculate the aerodynamics of wind turbines using the blade element momentum theory, + model wind fields to obtain specific design situations for wind turbines, + estimate the influence of dynamics of a wind turbine, especially in the context of fatigue loads, + transfer their knowledge to more complex topics such as simulation and measurements of dynamic loads, + calculate the economic aspects of wind turbines. Introduction to industrial wind turbine design, + rotor aerodynamics and Blade Element Momentum (BEM) theory, + dynamic loading and system dynamics, + wind field modelling for fatigue and extreme event loading, + design loads and design aspects of onshore wind turbines, + simulation and measurements of dynamic loads, + design of offshore wind turbines, + power quality and grid integration on wind turbines.

  • Unlimited access 5.04.4236 - Aeroelastic Simulation of Wind Turbines for EWEM Show lecturers
    • Prof. Dr. Martin Kühn

    Tuesday: 16:00 - 18:00, weekly (from 13/04/21)

    A student who has met the objectives of the course will be able to: o understand the basic concept of an aero-servo-elastic computer code to determine the unsteady aerodynamic loads, o derive and validate the required parameters to model the aero-hydro-elastic response of a wind turbine, o identify and interpret the required empirical parameters to correct the blade element momentum (BEM) method with respect to dynamic inflow, unsteady airfoil aerodynamics (dynamic stall), yawed flow, dynamic wake modeling, o explain the effects of the different models on the resulting time series and validate the code, o interpret design standards for on- and offshore wind turbines, select the required load cases according to site-specific environmental data, o identify the dimensioning load cases and calculate design loads for different main components of a wind turbine. Contents: The course focuses on the practical implications and hands-on experience of the aero-hydro-servo-elastic modelling and simulation of wind turbines. The subjects are similar but the treatment is complementary to the parallel course ‘Design of Wind Energy Systems’, which deals with the underlying theo-retical background: o advanced wind field modelling for fatigue and extreme event loading, o modelling of wind farm flow and wake effects, o rotor aerodynamics (e.g. stationary or dynamic effects, comparison of Blade Element Momentum theory and more advanced methods like free vortex methods or CFD), o structural dynamics and dynamic modelling of wind tur-bine structures (modelling by ordinary or partial differential equations, stochastics, multi body system modelling), o advanced control of wind turbines, o design standards, design loads and design aspects of offshore and onshore wind turbines. The students analyse in pairs a model of an entire wind turbine with the aid of a typical wind turbine design tool like GH Bladed, Flex5 or Aerodyn/FAST.

  • Unlimited access 5.06.M207 - Photovoltaic Systems Show lecturers
    • Hans-Gerhard Holtorf, PhD
    • Dr. Martin Knipper

    Thursday: 12:15 - 15:45, weekly (from 29/04/21), Please check regularly the updates

  • Unlimited access 5.06.M209 - Photovoltaic Systems Show lecturers
    • Hans-Gerhard Holtorf, PhD
    • Dr. Martin Knipper

    Thursday: 12:15 - 15:45, weekly (from 03/06/21), The seminar part related to Photovoltaic Systems

  • Unlimited access 5.06.M211 - Solar Energy Meteorology Applications Show lecturers
    • Dr. Elke Lorenz

    Wednesday: 16:15 - 17:45, weekly (from 21/04/21)

    Lecturer from Fraunhofer Institute for Solar Energy Systems (ISE) The lecture addresses applications of solar energy meteorology. As a basis, most important physical laws for solar energy meteorology as well as models for solar resource assessment and forecasting are introduced. A special emphasis will be on evaluation concepts and applications. The students will learn about: • requirements for solar resource data from different applications • models and measurement devices for solar resource assessment and forecasting • benefits and drawbacks of different models • methods to assess the quality of solar resource data The lectures are combined with short exercises. In the last - seminar type - part of the course the students are asked to get a better understanding of lessons learnt by studying and presenting publications related to solar energy meteorology.

  • Unlimited access 5.06.M213 - Wind Energy Applications - from Wind Resource to Wind Farm Applications Show lecturers
    • Dr. Hans-Peter Waldl

    Friday: 08:15 - 09:45, weekly (from 16/04/21)

    The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects. Contents: Assessment of the resource wind energy: Weibull distribution, measurement of wind speeds to determine the energy yield, fundamentals of the WAsP method, partial models of WAsP, MCP method for long-term correction of measured wind data in correlation with long-term reference data, conditions for stable, neutral and instable atmospheric conditions, wind yield assessments from wind distribution and power curve, fundamentals of determining the annual wind yield potentials of individual single-turbine units. Tracking effects and wind farms: Recovery of the original wind field in tracking flow of wind turbines, fundamentals of the Risø model, distance spacing and efficiency calculation of wind turbines in wind farms, fundamentals of offshore wind turbines, positive and negative effects of wind farms. Operating wind farms: Influences on the energy yield of the power efficiency of wind farms, three-column model of sustainability: “magic triangle”, profit optimization for increased energy production

Seminar and tutorial
  • Unlimited access 2.01.511 - Smart Grid Management Show lecturers
    • Dr. Jörg Bremer
    • Prof. Dr. Sebastian Lehnhoff

    Tuesday: 18:00 - 20:00, weekly (from 27/04/21)
    Thursday: 16:00 - 18:00, weekly (from 22/04/21)
    Dates on Friday. 23.07.21 09:00 - 12:00, Tuesday. 27.07.21 13:00 - 16:00, Thursday. 29.07.21 11:00 - 14:00, Monday. 02.08.21 09:00 - ...(more)

    Beachten Sie bitte die Informationen der Veranstaltung im Stud.IP

  • Unlimited access 2.12.042 - Ecological Economics Show lecturers
    • Prof. Dr. Bernd Siebenhüner
    • Prof. Dr. Stefanie Sievers-Glotzbach

    Dates on Friday. 16.04.21 10:00 - 14:00, Friday. 23.04.21, Friday. 30.04.21 10:00 - 12:00, Friday. 28.05.21, Friday. 02.07.21 10:00 - 14:00
    Ecological Economics is concerned with integrating the study and management of "nature's household" (ecology) and "humankind's household" (economics). This integration is central to many of humanity’s current problems and to governing economic activity in a way that promotes human well-being, sustainability, and justice. The aim of the module “Ecological Economics” is to introduce students to core concepts and policy implications from the field of Ecological Economics. The module is structured into three parts. First, students will be introduced to the topic by two lectures on the specific vision and paradigms of Ecological Economics as distinguished from environmental & resource economics and on the history of Ecological Economics. Second, the students work out and discuss the core analytical concepts (ecological footprint, ecosystem services, social-ecological resilience, substitutability of natural capital, time) as well as the core normative concepts (justice, human behaviour) in Ecological Economics. Third, the students will discuss and reflect certain policy implications following from Ecological Economics – specifically the economics of degrowth and the measurement of welfare. The basis for discussion will be classical and current scientific papers.

  • Unlimited access 2.12.133 - International Environmental Governance Show lecturers
    • Prof. Dr. Bernd Siebenhüner

    Monday: 12:15 - 13:45, weekly (from 12/04/21)

  • Unlimited access 5.04.4063 - Introduction to Photovoltaics Show lecturers
    • Dr. Levent Gütay

    Tuesday: 08:00 - 12:00, weekly (from 13/04/21), V+Ü
    Dates on Friday. 13.08.21, Friday. 20.08.21 09:15 - 11:15, Monday. 23.08.21 10:30 - 12:30, Friday. 27.08.21 09:15 - 11:15, Monday. 30 ...(more)

    Auf Basis thermodynamischer und halbleiter/ festkörperphysikalischer Grundlagen sollen die Studierenden ein fundiertes Verständnis der photovoltaischen Energiewandlung sowie der elementaren Verlustprozesse in photovoltaischen Bauelementen erlangen und dabei ihre bisher erlangten Studienkenntnisse in den o.g. Disziplinen sicher anwenden. Aus diesem Wissen sollen die Studierenden wesentliche Randbedingungen zur Konzeption einer Solarzelle mit hohem Wirkungsgrad ableiten und qualitativ das Betriebsverhalten (Beleuchtungs- und Temperatureffekte) unter realen Bedingungen voraussagen können. Die Teilnehmer sollten darüber hinaus in der Lage sein, Anforderungen an die verwendeten Halbleitermaterialien (z.B. Dotierung, Tiefengradierung bestimmter Materialeigenschaften) und die internen Grenzflächen der Solarzelle physikalisch zu begründen. Neben grundlagenorientierten und materialwissenschaftlichen Kenntnissen zur Photovoltaik erwerben die Studierenden technisch geprägte Inhalte zum Funktionsprinzip und zur Konzeption von Photovoltaikmodulen sowie zur Systemtechnik photovoltaischer Anlagen. Inhalte: Festkörper- / halbleiterphysikalische Grundlagen, das solare Spektrum, Leistungsdichte, Absorption und Emission von Licht in Halbleitern, Generation und Rekombination, Gleichgewicht und Nichtgleichgewicht, Ladungstransport, Quasi-Fermi-Niveaus, Elektrostatik des pn-Übergangs, Majoritäten- und Minoritätenströme im pn-Übergang im Gleichgewicht und unter Beleuchtung, Sammeleffizienz, geometrische Auslegung des pn-Übergangs, Strom-Spannungs-Charakteristik, Halbleiter-Heterokontakte, pin-Strukturen, Strategien zur Optimierung der Solarzelleneffizienz, Technologieüberblick in der Photovoltaik

  • Unlimited access 5.04.4064 - Advanced Solar Energy Meteorology Show lecturers
    • Dr. Detlev Heinemann

    Tuesday: 14:00 - 16:00, weekly (from 13/04/21)

  • Unlimited access 5.04.4065 - Advanced Wind Energy Meteorology Show lecturers
    • Dr. Detlev Heinemann

    Wednesday: 12:00 - 14:00, weekly (from 14/04/21)

  • Unlimited access 5.04.4071 Ü - Übung zu Fluid Dynamics II / Fluiddynamik II Show lecturers
    • Piyush Singh
    • Prof. Dr. Joachim Peinke

    Wednesday: 10:00 - 12:00, weekly (from 21/04/21)

  • Unlimited access 5.04.4072 Ü1 - Exercises to Computational Fluid Dynamics I Show lecturers
    • Gabriele Centurelli
    • Prof. Dr. Laura Lukassen
    • Arslan Adeel-Ur-Rehman

    Thursday: 16:00 - 18:00, weekly (from 22/04/21)

  • Unlimited access 5.04.4074 Ü1 - Exercises to Computational Fluid Dynamics II Show lecturers
    • Gabriele Centurelli
    • Dr. Bernhard Stoevesandt

    Thursday: 16:00 - 18:00, weekly (from 03/06/21)

  • Unlimited access 5.04.4234 - Wind Physics Measurement Project Show lecturers
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Dr. Matthias Wächter, Dipl.-Phys.
    • Prof. Dr. Joachim Peinke
    • Dipl.-Ing. Andreas Hermann Schmidt

    Monday: 12:15 - 13:45, weekly (from 14/04/21)

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

Notes for the module
Module examination
2 Prüfungsleistungen: Das Modul ist unbenotet, jedoch müssen 2 der möglichen Kurse mindestens als ‚bestanden‘ gewertet werden um das Modul zu bestehen. Mögliche Prüfungsformen sind: Klausur (1 h), mündliche Prüfung (20 min), Referat (10 Seiten Ausarbeitung + 10 Minuten Präsentation), Hausarbeit (max. 20 Seiten), fachpraktische Übung (max. 8), Seminararbeit (max. 20 Seiten), Portfolio, Präsentation (15 min.) In Seminaren wird Aktive Teilnahme (siehe Ergänzung zu „§ 9 Abs. (6) ) gefordert..
Skills to be acquired in this module

After completing the module students will be able to:

-        describe basic knowledge in two of a wide field of disciplines (technical, scientific, social, political, transferrable, language) as required for the implementation of renewable energy

-        critically discuss basic principles of the implementation of renewable energy
-        justify their personal decision on educational fields for their career development